$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Primate ventral striatum maintains neural representations of the value of previously rewarded objects for habitual seeking 원문보기

Nature communications, v.12 no.1, 2021년, pp.2100 -   

Kang, Joonyoung (Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Kim, Hyeji (Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea) ,  Hwang, Seong Hwan (School of Biological Sciences, Seoul National University (SNU), Seoul, 08826 Republic of Korea) ,  Han, Minjun (Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea) ,  Lee, Sue-Hyun (Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Kim, Hyoung F. (School of Biological Sciences, Seoul National University (SNU), Seoul, 08826 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

The ventral striatum (VS) is considered a key region that flexibly updates recent changes in reward values for habit learning. However, this update process may not serve to maintain learned habitual behaviors, which are insensitive to value changes. Here, using fMRI in humans and single-unit electro...

참고문헌 (57)

  1. 1. Kilts CD Neural activity related to drug craving in cocaine addiction Arch. Gen. Psychiatry 2001 58 334 341 10.1001/archpsyc.58.4.334 11296093 

  2. 2. Robbins TW Everitt BJ Drug addiction: bad habits add up Nature 1999 398 567 570 10.1038/19208 10217139 

  3. 3. Parkinson JA Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function Behav. Brain Res. 2002 137 149 163 10.1016/S0166-4328(02)00291-7 12445721 

  4. 4. Fernandez-Ruiz, J., Wang, J., Aigner, T. G. & Mishkin, M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc. Natl. Acad. Sci. USA 98 , 4196–4201 (2001). 

  5. 5. Ghazizadeh A Griggs W Hikosaka O Object-finding skill created by repeated reward experience J. Vis. 2016 16 17 10.1167/16.10.17 

  6. 6. Kim HF Hikosaka O Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards Brain 2015 138 1776 1800 10.1093/brain/awv134 25981958 

  7. 7. Choi, E. Y., Ding, S. L. & Haber, S. N. Combinatorial inputs to the ventral striatum from the temporal cortex, frontal cortex, and amygdala: implications for segmenting the striatum. eNeuro 4 , 1–15 (2017). 

  8. 8. Somogyi, P., Bolam, J. P., Totterdell, S. & Smith, A. D. Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones. Brain Res . 217 , 245–263 (1981). 

  9. 9. Lynd‐Balta E Haber SN Primate striatonigral projections: a comparison of the sensorimotor‐related striatum and the ventral striatum J. Comp. Neurol. 1994 345 562 578 10.1002/cne.903450407 7962700 

  10. 10. Haber SN Lynd E Klein C Groenewegen HJ Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study J. Comp. Neurol. 1990 293 282 298 10.1002/cne.902930210 19189717 

  11. 11. Ikemoto S Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex Brain Res. Rev. 2007 56 27 78 10.1016/j.brainresrev.2007.05.004 17574681 

  12. 12. Lynd-Balta E Haber SN The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum Neuroscience 1994 59 625 640 10.1016/0306-4522(94)90182-1 7516506 

  13. 13. O’Doherty J Dissociable roles of ventral and dorsal striatum in instrumental conditioning Science 2004 304 452 454 10.1126/science.1094285 15087550 

  14. 14. Schultz W Apicella P Scarnati E Ljungberg T Neuronal activity in monkey ventral striatum related to the expectation of reward J. Neurosci. 1992 12 4595 4610 10.1523/JNEUROSCI.12-12-04595.1992 1464759 

  15. 15. Apicella P Ljungberg T Scarnati E Schultz W Responses to reward in monkey dorsal and ventral striatum Exp. Brain Res. 1991 85 491 500 10.1007/BF00231732 1915708 

  16. 16. Knutson B Adams CM Fong GW Hommer D Anticipation of increasing monetary reward selectively recruits nucleus accumbens J. Neurosci. 2001 21 1 5 10.1523/JNEUROSCI.21-16-j0002.2001 

  17. 17. Yamamoto S Kim HF Hikosaka O Reward value-contingent changes of visual responses in the primate caudate tail associated with a visuomotor skill J. Neurosci. 2013 33 11227 11238 10.1523/JNEUROSCI.0318-13.2013 23825426 

  18. 18. Kim HF Hikosaka O Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values Neuron 2013 79 1001 1010 10.1016/j.neuron.2013.06.044 23954031 

  19. 19. Kim HF Amita H Hikosaka O Indirect pathway of caudal basal ganglia for rejection of valueless visual objects Neuron 2017 94 920 930.e3 10.1016/j.neuron.2017.04.033 28521141 

  20. 20. Kim HF Ghazizadeh A Hikosaka O Dopamine neurons encoding long-term memory of object value for habitual behavior Cell 2015 163 1165 1175 10.1016/j.cell.2015.10.063 26590420 

  21. 21. Chun, M. M. & Jiang, Y. Top-down attentional guidance based on implicit learning of visual covariation. Psychol. Sci . 10 , 360–365 (1999). 

  22. 22. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci . 27 , 2349–2356 (2007). 

  23. 23. Menon, V. Salience network.  Brain Mapp . 2 , 597–611 (2015). 

  24. 24. Kim, H. F., Ghazizadeh, A. & Hikosaka, O. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat . 8 , 120 (2014). 

  25. 25. Deniau, J. M., Menetrey, A. & Thierry, A. M. Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61 , 533–545 (1994). 

  26. 26. Griggs WS Flexible and stable value coding areas in caudate head and tail receive anatomically distinct cortical and subcortical inputs Front. Neuroanat. 2017 11 1 19 10.3389/fnana.2017.00106 28144216 

  27. 27. Salgado S Kaplitt MG The nucleus accumbens: a comprehensive review Stereotact. Funct. Neurosurg. 2015 93 75 93 10.1159/000368279 25720819 

  28. 28. Floresco SB The nucleus accumbens: an interface between cognition, emotion, and action Annu. Rev. Psychol. 2015 66 25 52 10.1146/annurev-psych-010213-115159 25251489 

  29. 29. Matsumoto M Hikosaka O Two types of dopamine neuron distinctly convey positive and negative motivational signals Nature 2009 459 837 841 10.1038/nature08028 19448610 

  30. 30. Barberini, C. L., Morrison, S. E., Saez, A., Lau, B. & Salzman, C. D. Complexity and competition in appetitive and aversive neural circuits. Front. Neurosci . 6 , 170–182 (2012). 

  31. 31. Ghazizadeh, A., Griggs, W. & Hikosaka, O. Ecological origins of object salience: reward, uncertainty, aversiveness, and novelty. Front. Neurosci . 10 , 378 (2016). 

  32. 32. Cooper, J. C. & Knutson, B. Valence and salience contribute to nucleus accumbens activation. Neuroimage 39, 538–547 (2008). 

  33. 33. Yasuda M Yamamoto S Hikosaka O Robust representation of stable object values in the oculomotor basal ganglia J. Neurosci. 2012 32 16917 16932 10.1523/JNEUROSCI.3438-12.2012 23175843 

  34. 34. Atallah HE Lopez-Paniagua D Rudy JW O’Reilly RC Separate neural substrates for skill learning and performance in the ventral and dorsal striatum Nat. Neurosci. 2007 10 126 131 10.1038/nn1817 17187065 

  35. 35. Keiflin R Janak PH Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry Neuron 2015 88 247 263 10.1016/j.neuron.2015.08.037 26494275 

  36. 36. Kareken DA Alcohol-related olfactory cues activate the nucleus accumbens and ventral tegmental area in high-risk drinkers: preliminary findings Alcohol. Clin. Exp. Res. 2004 28 550 557 10.1097/01.ALC.0000122764.60626.AF 15100605 

  37. 37. Heinz A Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving Am. J. Psychiatry 2004 161 1783 1789 10.1176/ajp.161.10.1783 15465974 

  38. 38. Schmidt ED Voorn P Binnekade R Schoffelmeer ANM De Vries TJ Differential involvement of the prelimbic cortex and striatum in conditioned heroin and sucrose seeking following long-term extinction Eur. J. Neurosci. 2005 22 2347 2356 10.1111/j.1460-9568.2005.04435.x 16262673 

  39. 39. Hamlin AS Clemens KJ McNally GP Renewal of extinguished cocaine-seeking Neuroscience 2008 151 659 670 10.1016/j.neuroscience.2007.11.018 18164822 

  40. 40. Saunders BT Robinson TE The role of dopamine in the accumbens core in the expression of pavlovian-conditioned responses Eur. J. Neurosci. 2012 36 2521 2532 10.1111/j.1460-9568.2012.08217.x 22780554 

  41. 41. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 , 33–46 (2004). 

  42. 42. Schotanus, S. M. & Chergui, K. Dopamine D1 receptors and group I metabotropic glutamate receptors contribute to the induction of long-term potentiation in the nucleus accumbens. Neuropharmacology 54 , 837–844 (2008). 

  43. 43. Li, Y. J. et al. Re-exposure to morphine-associated context facilitated long-term potentiation in the vSUB-NAc glutamatergic pathway via GluN2B-containing receptor activation. Addict. Biol . 22 , 435–445 (2017). 

  44. 44. LeGates, T. A. et al. Reward behaviour is regulated by the strength of hippocampus–nucleus accumbens synapses. Nature 564 , 258–262 (2018). 

  45. 45. Li YQ Inhibition of PKMζ in nucleus accumbens core abolishes long-term drug reward memory J. Neurosci. 2011 31 5436 5446 10.1523/JNEUROSCI.5884-10.2011 21471379 

  46. 46. Shabashov D Shohami E Yaka R Inactivation of PKMζ in the NAc shell abolished cocaine-conditioned reward J. Mol. Neurosci. 2012 47 546 553 10.1007/s12031-011-9671-7 22127928 

  47. 47. Ferretti V Ventral striatal plasticity and spatial memory Proc. Natl Acad. Sci. USA 2010 107 7945 7950 10.1073/pnas.0911757107 20351272 

  48. 48. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37 , 407–419 (1998). 

  49. 49. Graybiel, A. M. Habits, rituals, and the evaluative brain. Ann. Rev. Neurosci. 31 , 359–387 (2008). 

  50. 50. Dubois, J., de Berker, A. O. & Tsao, D. Y. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci . 35 , 2791–2802 (2015). 

  51. 51. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412 , 150–157 (2001). 

  52. 52. Maier, A. et al. Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey. Nat. Neurosci . 11 , 1193–1200 (2008). 

  53. 53. Miyashita, Y., Higuchi, S. I., Sakai, K. & Masui, N. Generation of fractal patterns for probing the visual memory. Neurosci. Res . 12 , 307–311 (1991). 

  54. 54. Haxby JV Distributed and overlapping representations of faces and objects in ventral temporal cortex Science 2001 239 2425 2430 10.1126/science.1063736 

  55. 55. Lee SH Kravitz DJ Baker CI Disentangling visual imagery and perception of real-world objects Neuroimage 2012 59 4064 4073 10.1016/j.neuroimage.2011.10.055 22040738 

  56. 56. Lee SH Kravitz DJ Baker CI Differential representations of perceived and retrieved visual information in hippocampus and cortex Cereb. Cortex 2019 29 4452 4461 10.1093/cercor/bhy325 30590463 

  57. 57. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. 3 , 158–165 (2012). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로