$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Lower-Limb-Assisting Robotic Exoskeleton Reduces Energy Consumption in Healthy Young Persons during Stair Climbing 원문보기

Applied bionics and biomechanics, v.2021, 2021년, pp.8833461 -   

Woo, Hanseung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea) ,  Kong, Kyoungchul (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea) ,  Rha, Dong-wook (Angel Robotics, Seoul 04798, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Many robotic exoskeletons for lower limb assistance aid walking by reducing energy costs. However, investigations examining stair-climbing assistance have remained limited, generally evaluating reduced activation of related muscles. This study sought to investigate how climbing assistance by a robot...

참고문헌 (37)

  1. 1 Chu A. Kazerooni H. Zoss A. On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX) Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005 Barcelona, Spain 4345 4352 10.1109/ROBOT.2005.1570789 2-s2.0-33846123645 

  2. 2 Cenciarini M. Dollar A. M. Biomechanical considerations in the design of lower limb exoskeletons Proceedings of the IEEE International Conference on Rehabilitation Robotics ICORR 2011 Zurich, Switzerland 297 302 

  3. 3 Norris J. A. Granata K. P. Mitros M. R. Byrne E. M. Marsh A. P. Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults Gait & Posture 2007 25 4 620 627 10.1016/j.gaitpost.2006.07.002 2-s2.0-33847342577 16905320 

  4. 4 Sawicki G. S. Ferris D. P. Mechanics and energetics of level walking with powered ankle exoskeletons Journal of Experimental Biology 2008 211 9 1402 1413 10.1242/jeb.009241 2-s2.0-46849086771 

  5. 5 Malcolm P. Derave W. Galle S. De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking Plo S one 2013 8 2, article e56137 10.1371/journal.pone.0056137 2-s2.0-84873925118 23418524 

  6. 6 Mooney L. M. Rouse E. J. Herr H. M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage Journal of Neuroengineering and Rehabilitation 2014 11 1 p. 80 10.1186/1743-0003-11-80 2-s2.0-84901689431 24885527 

  7. 7 Mooney L. M. Herr H. M. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton Journal of Neuroengineering and Rehabilitation 2016 13 1 p. 4 10.1186/s12984-016-0111-3 2-s2.0-84955304893 

  8. 8 Ding Y. Galiana I. Asbeck A. T. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017 25 2 119 130 10.1109/TNSRE.2016.2523250 2-s2.0-85015730320 26849868 

  9. 9 Quinlivan B. Lee S. Malcolm P. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit Science robotics 2017 2 2, article eaah4416 10.1126/scirobotics.aah4416 2-s2.0-85018174188 33157865 

  10. 10 Panizzolo F. A. Galiana I. Asbeck A. T. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking Journal of Neuro Engineering and Rehabilitation 2016 13 1 p. 43 10.1186/s12984-016-0150-9 2-s2.0-84971207220 27169361 

  11. 11 Lee S. Kim J. Baker L. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking Journal of Neuroengineering and Rehabilitation 2018 15 1 p. 66 10.1186/s12984-018-0410-y 2-s2.0-85049890758 30001726 

  12. 12 Lee S. Karavas N. Quinlivan B. T. Autonomous multi-joint soft exosuit for assistance with walking overground 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018 Brisbane, QLD, Australia 2812 2819 10.1109/ICRA.2018.8460972 2-s2.0-85059032538 

  13. 13 Riener R. Rabuffetti M. Frigo C. Stair ascent and descent at different inclinations Gait & Posture 2002 15 1 32 44 10.1016/S0966-6362(01)00162-X 2-s2.0-0036141182 11809579 

  14. 14 DeVita P. Helseth J. Hortobagyi T. Muscles do more positive than negative work in human locomotion Journal of Experimental Biology 2007 210 19 3361 3373 10.1242/jeb.003970 2-s2.0-35848965238 17872990 

  15. 15 Fleischer C. Hommel G. A human–exoskeleton interface utilizing electromyography IEEE Transactions on Robotics 2008 24 4 872 882 10.1109/TRO.2008.926860 2-s2.0-50649101449 

  16. 16 Yeh T.-J. Wu M.-J. Lu T.-J. Wu F.-K. Huang C.-R. Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis Mechatronics 2010 20 6 686 697 10.1016/j.mechatronics.2010.07.004 2-s2.0-77957918243 

  17. 17 Sasaki D. Noritsugu T. Takaiwa M. Development of pneumatic lower limb power assist wear driven with wearable air supply system 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems 2013 Tokyo, Japan 4440 4445 10.1109/IROS.2013.6696994 2-s2.0-84893751833 

  18. 18 Nakamura T. Saito K. Kosuge K. Control of wearable walking support system based on human-model and grf Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2005 Barcelona, Spain 4394 4399 10.1109/ROBOT.2005.1570796 2-s2.0-33846127116 

  19. 19 Gams A. Petriˇc T. Debevec T. Babiˇc J. Effects of robotic knee exoskeleton on human energy expenditure IEEE Transactions on Biomedical Engineering 2013 60 6 1636 1644 10.1109/TBME.2013.2240682 2-s2.0-84877897716 23340585 

  20. 20 Ainsworth B. E. Haskell W. L. Herrmann S. D. 2011 compendium of physical activities: a second update of codes and met values Medicine & Science in Sports & Exercise 2011 43 8 1575 1581 10.1249/MSS.0b013e31821ece12 2-s2.0-79961091187 21681120 

  21. 21 Kong K. Bae J. Tomizuka M. Control of rotary series elastic actuator for ideal force-mode actuation in human–robot interaction applications IEEE/ASME Transactions on Mechatronics 2009 14 1 105 118 10.1109/TMECH.2008.2004561 2-s2.0-61549139670 

  22. 22 Kong K. Bae J. Tomizuka M. A compact rotary series elastic actuator for human assistive systems IEEE/ASME Transactions on Mechatronics 2012 17 2 288 297 10.1109/TMECH.2010.2100046 2-s2.0-84856364365 

  23. 23 Kong K. Tomizuka M. A gait monitoring system based on air pressure sensors embedded in a shoe IEEE/ASME Transactions on Mechatronics 2009 14 3 358 370 10.1109/TMECH.2008.2008803 2-s2.0-67650102204 

  24. 24 Blaya J. A. Herr H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait IEEE Transactions on Neural Systems and Rehabilitation Engineering 2004 12 1 24 31 10.1109/TNSRE.2003.823266 2-s2.0-1542723639 15068184 

  25. 25 Veneman J. F. Ekkelenkamp R. Kruidhof R. van der Helm F. C. van der Kooij H. A series elastic-and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots The international journal of robotics research 2006 25 3 261 281 10.1177/0278364906063829 2-s2.0-33645672674 

  26. 26 Kim S. Bae J. Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control IEEE/ASME Transactions on Mechatronics 2017 22 3 1392 1400 10.1109/TMECH.2017.2687979 2-s2.0-85026837323 

  27. 27 Banala S. K. Kim S. H. Agrawal S. K. Scholz J. P. Robot assisted gait training with active leg exoskeleton (alex) IEEE Transactions on Neural Systems and Rehabilitation Engineering 2009 17 1 2 8 10.1109/TNSRE.2008.2008280 2-s2.0-60249095930 19211317 

  28. 28 Van Asseldonk E. H. Veneman J. F. Ekkelenkamp R. Buurke J. H. Van der Helm F. C. van der Kooij H. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control IEEE Transactions on Neural Systems and Rehabilitation Engineering 2008 16 4 360 370 10.1109/TNSRE.2008.925074 2-s2.0-49649083847 18713676 

  29. 29 Ding Y. Panizzolo F. A. Siviy C. Effect of timing of hip extension assistance during loaded walking with a soft exosuit Journal of Neuroengineering and Rehabilitation 2016 13 1 p. 87 10.1186/s12984-016-0196-8 2-s2.0-84990841990 27716439 

  30. 30 Galle S. Malcolm P. Collins S. H. De Clercq D. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power Journal of Neuroengineering and Rehabilitation 2017 14 1 p. 35 10.1186/s12984-017-0235-0 2-s2.0-85018172122 28449684 

  31. 31 Mathworks Inc Matlab smooth function Apr. 2018, https://www.mathworks.com/help/curvefit/smooth.html 

  32. 32 Plasschaert F. Jones K. Forward M. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed Gait & Posture 2009 29 2 311 316 10.1016/j.gaitpost.2008.09.015 2-s2.0-58549120357 19027301 

  33. 33 Hood V. L. Granat M. H. Maxwell D. J. Hasler J. P. A new method of using heart rate to represent energy expenditure: the total heart beat index Archives of Physical Medicine and Rehabilitation 2002 83 9 1266 1273 10.1053/apmr.2002.34598 2-s2.0-0036713838 12235607 

  34. 34 Yan T. Cempini M. Oddo C. M. Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons Robotics and Autonomous Systems 2015 64 120 136 10.1016/j.robot.2014.09.032 2-s2.0-84926163555 

  35. 35 Walsh C. J. Endo K. Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation International Journal of Humanoid Robotics 2007 4 3 487 506 10.1142/S0219843607001126 2-s2.0-36048986416 

  36. 36 Ding Y. Kim M. Kuindersma S. Walsh C. J. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking Science robotics 2018 3 15, article eaar5438 10.1126/scirobotics.aar5438 2-s2.0-85056463857 

  37. 37 Galle S. Malcolm P. Derave W. De Clercq D. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations Gait & Posture 2015 41 1 246 251 10.1016/j.gaitpost.2014.10.015 2-s2.0-84926043257 25455436 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로