최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE robotics and automation letters, v.6 no.3, 2021년, pp.4672 - 4679
Choe, Jaesung (KAIST, Division of the Future Vehicle, Daejeon, South Korea) , Joo, Kyungdon (UNIST, Artificial Intelligence Graduate School and the Department of Computer Science, Ulsan, South Korea) , Imtiaz, Tooba (KAIST, School of Electrical Engineering, Daejeon, South Korea) , Kweon, In So (KAIST, School of Electrical Engineering, Daejeon, South Korea)
Stereo-LiDAR fusion is a promising task in that we can utilize two different types of 3D perceptions for practical usage – dense 3D information (stereo cameras) and highly-accurate sparse point clouds (LiDAR). However, due to their different modalities and structures, the method...
Proc Conf Comput Vis Pattern Recognit Virtual worlds as proxy for multi-object tracking analysis gaidon 0 4340
Geiger, A, Lenz, P, Stiller, C, Urtasun, R. Vision meets robotics: The KITTI dataset. The International journal of robotics research, vol.32, no.11, 1231-1237.
Proc Eur Conf Comput Vis Stacked hourglass networks for human pose estimation newell 0 483
Proc AAAI Conf Artif Intell Learning context and resource aware convolutional spatial propagation networks for depth completion cheng 0 10615
Proc Int Conf Learn Representations Pseudo-LiDAR Accurate depth for 3D object detection in autonomous driving you 0
Proc Adv Neural Inf Process Syst Depth map prediction from a single image using a multi-scale deep network eigen 0
Listereo: Generate dense depth maps from lidar and stereo imagery zhang 2019
Virtual kitti 2 cabon 2020
Proc Int Conf Learn Representations Dpsnet: End-to-end deep plane sweep stereo im 0
Proc Eur Conf Comput Vis Non-local spatial propagation network for depth completion park 0
ShapENEt: An information-rich 3D model repository chang 2015
Proc IEEE Int Conf Robot Automat Sparse-to-dense: Depth prediction from sparse depth samples and a single image mal 0 4796
ACM Trans on Graph A scalable active framework for region annotation in 3D shape collections yi 2016 10.1145/2980179.2980238 35 1
Proc IEEE Int Conf Robot Automat Stereo object matching network choe 0
Learning guided convolutional network for depth completion tang 2019
Multiple View Geometry in Computer Vision hartley 2003
Proc Conf Comput Vis Pattern Recognit PoinTNEt: Deep learning on point sets for 3D classification and segmentation qi 0 652
Proc Adv Neural Inf Process Syst PoinTCNN: Convolution on x-transformed points li 0 820
Wang, Yue, Sun, Yongbin, Liu, Ziwei, Sarma, Sanjay E., Bronstein, Michael M., Solomon, Justin M.. Dynamic Graph CNN for Learning on Point Clouds. ACM transactions on graphics, vol.38, no.5, 1-12.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.