최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기PLoS ONE, v.16 no.4, 2021년, pp.e0249404 -
Son, Jeongtae (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) , Kim, Dongsup (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea)
Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks red...
1 Wallach I , Dzamba M , Heifets A . AtomNet: A deep, convolutional neural network for bioactivity prediction in structure-based drug discovery . Abstr Pap Am Chem S . 2016 ; 251 . WOS:000431903806097.
2 Stepniewska-Dziubinska MM , Zielenkiewicz P , Siedlecki P . Development and evaluation of a deep learning model for protein-ligand binding affinity prediction . Bioinformatics . 2018 ; 34 ( 21 ): 3666 ? 74 . 10.1093/bioinformatics/bty374 WOS:000450038900010. 29757353
3 Gomes J , Ramsundar B , Feinberg EN , Pande VS . Atomic convolutional networks for predicting protein-ligand binding affinity . arXiv preprint arXiv:170310603 . 2017 .
4 Nguyen T , Le H , Venkatesh S . GraphDTA: prediction of drug?target binding affinity using graph convolutional networks . BioRxiv . 2019 : 684662 .
5 Karimi M , Wu D , Wang ZY , Shen Y . DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks . Bioinformatics . 2019 ; 35 ( 18 ): 3329 ? 38 . WOS:000487327500016. 10.1093/bioinformatics/btz111 30768156
6 Lim J , Ryu S , Park K , Choe YJ , Ham J , Kim WY . Predicting drug-target interaction using 3D structure-embedded graph representations from graph neural networks . arXiv preprint arXiv:190408144 . 2019 .
7 Torng W , Altman RB . Graph Convolutional Neural Networks for Predicting Drug-Target Interactions . J Chem Inf Model . 2019 ; 59 ( 10 ): 4131 ? 49 . WOS:000503918200011. 10.1021/acs.jcim.9b00628 31580672
8 Francoeur P , Masuda T , Sunseri J , Jia A , Iovanisci RB , Snyder I , et al . 3D Convolutional neural networks and a crossdocked dataset for structure-based drug design . J Chem Inf Model . 2020 .
9 Altae-Tran H , Ramsundar B , Pappu AS , Pande V . Low Data Drug Discovery with One-Shot Learning . Acs Central Sci . 2017 ; 3 ( 4 ): 283 ? 93 . WOS:000400324200009. 10.1021/acscentsci.6b00367 28470045
10 Liu Z , Li Y , Han L , Li J , Liu J , Zhao Z , et al . PDB-wide collection of binding data: current status of the PDBbind database . Bioinformatics . 2015 ; 31 ( 3 ): 405 ? 12 . Epub 2014/10/11. 10.1093/bioinformatics/btu626 . 25301850
11 Alhossary A , Handoko SD , Mu Y , Kwoh CK . Fast, accurate, and reliable molecular docking with QuickVina 2 . Bioinformatics . 2015 ; 31 ( 13 ): 2214 ? 6 . Epub 2015/02/27. 10.1093/bioinformatics/btv082 . 25717194
12 O’Boyle NM , Banck M , James CA , Morley C , Vandermeersch T , Hutchison GR . Open Babel: An open chemical toolbox . J Cheminform . 2011 ; 3 : 33 . Epub 2011/10/11. 10.1186/1758-2946-3-33 21982300
13 Abadi M , Barham P , Chen J , Chen Z , Davis A , Dean J , et al ., editors. Tensorflow: A system for large-scale machine learning. 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) ; 2016 .
14 Li Y , Liu ZH , Li J , Han L , Liu J , Zhao ZX , et al . Comparative Assessment of Scoring Functions on an Updated Benchmark: 1 . Compilation of the Test Set. J Chem Inf Model . 2014 ; 54 ( 6 ): 1700 ?+. WOS:000337937100016. 10.1021/ci500080q 24716849
15 Li Y , Han L , Liu Z , Wang R . Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results . J Chem Inf Model . 2014 ; 54 ( 6 ): 1717 ? 36 . Epub 2014/04/09. 10.1021/ci500081m . 24708446
16 Dunbar JB Jr , Smith RD , Yang C-Y , Ung PM-U , Lexa KW , Khazanov NA , et al . CSAR benchmark exercise of 2010: selection of the protein?ligand complexes . J Chem Inf Model . 2011 ; 51 ( 9 ): 2036 ? 46 . 10.1021/ci200082t 21728306
17 Velikovi P , Cucurull G , Casanova A , Romero A , Lio P , Bengio Y . Graph attention networks . arXiv preprint arXiv:171010903 . 2017 .
18 Sabour S , Frosst N , Hinton GE , editors. Dynamic routing between capsules . Advances in neural information processing systems ; 2017 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.