$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A novel approach to dry weight adjustments for dialysis patients using machine learning 원문보기

PLoS ONE, v.16 no.4, 2021년, pp.e0250467 -   

Kim, Hae Ri (Division of Nephrology, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea) ,  Bae, Hong Jin (Division of Nephrology, Department of Internal Medicine, Cheongju St. Mary’s Hospital, Cheongju, South Korea) ,  Jeon, Jae Wan (Division of Nephrology, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, South Korea) ,  Ham, Young Rok (Department of Nephrology, Medical School, Chungnam National University, Daejeon, South Korea) ,  Na, Ki Ryang (Department of Nephrology, Medical School, Chungnam National University, Daejeon, South Korea) ,  Lee, Kang Wook (Department of Nephrology, Medical School, Chungnam National University, Daejeon, South Korea) ,  Hyon, Yun Kyong (Medical Mathematics Division, National Institute for Mathematical Sciences, Daejeon, South Korea) ,  Choi, Dae Eun (Department of Nephrology, Medical School, Chungnam National University, Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Background and aimsKnowledge of the proper dry weight plays a critical role in the efficiency of dialysis and the survival of hemodialysis patients. Recently, bioimpedance spectroscopy(BIS) has been widely used for set dry weight in hemodialysis patients. However, BIS is often misrepresented in clin...

참고문헌 (36)

  1. 1 Chang S-T , Chen C-C , Chen C-L , Cheng H-W , Chung C-M , Yang T-Y . Changes of the cardiac architectures and functions for chronic hemodialysis patients with dry weight determined by echocardiography . Blood Purif . 2004 ; 22 ( 4 ): 351 – 359 . 10.1159/000080031 15297785 

  2. 2 Wizemann V , Wabel P , Chamney P , Zaluska W , Moissl U , Rode C , et al . The mortality risk of overhydration in haemodialysis patients . Nephrol Dial Transplant . 2009 ; 24 ( 5 ): 1574 – 1579 . 10.1093/ndt/gfn707 19131355 

  3. 3 Charra B . Does empirical long slow dialysis result in better survival? If so, how and why? ASAIO J . 1993 . 

  4. 4 Sinha AD , Agarwal R . Opinion: can chronic volume overload be recognized and prevented in hemodialysis patients? The pitfalls of the clinical examination in assessing volume status . Semin Dial . 2009 ; 22 ( 5 ): 480 – 482 . 10.1111/j.1525-139X.2009.00641.x 19744155 

  5. 5 Onofriescu M , Siriopol D , Voroneanu L , Hogas S , Nistor I , Apetrii M , et al . Overhydration, cardiac function and survival in hemodialysis patients . PLoS One . 2015 ; 10 ( 8 ): e0135691 . 10.1371/journal.pone.0135691 26274811 

  6. 6 Vertes V , Cangiano JL , Berman LB , Gould A . Hypertension in end-stage renal disease . NEJM . 1969 ; 280 ( 18 ): 978 – 981 . 10.1056/NEJM196905012801802 5781668 

  7. 7 Fishbane S , Natke E , Maesaka JK . Role of volume overload in dialysis-refractory hypertension . Am J Kidney Dis . 1996 ; 28 ( 2 ): 257 – 261 . 10.1016/s0272-6386(96)90309-1 8768921 

  8. 8 Amato R , Hlebovy D , King B , Salai P . Fluid removal. Obtaining estimated dry weight during hemodialysis . ANNA Core Curriculum for Nephrology Nursing . 2008 : 692 – 703 . 

  9. 9 Sands JJ , Usvyat LA , Sullivan T , Segal JH , Zabetakis P , Kotanko P , et al . Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome . Hemodial Int . 2014 ; 18 ( 2 ): 415 – 422 . 10.1111/hdi.12138 24467830 

  10. 10 Daugirdas JT , Blake PG , Ing TS . Handbook of dialysis . 4th ed : Lippincott Williams & Wilkins ; 2012 . 

  11. 11 San Miguel S . Haemodialysis dry weight assessment: A literature review . Ren Soc Aust J . 2010 ; 6 ( 1 ): 19 – 24 . 

  12. 12 Poggi A , Maggiore Q . Cardiothoracic ratio as a guide to ultrafiltration therapy in dialyzed patients . Int J Artif Organs . 1980 ; 3 ( 6 ): 332 – 337 . 6450733 

  13. 13 Vitturi N , Dugo M , Soattin M , Simoni F , Maresca L , Zagatti R , et al . Lung ultrasound during hemodialysis: the role in the assessment of volume status . Int Urol Nephrol . 2014 ; 46 ( 1 ): 169 – 174 . 10.1007/s11255-013-0500-5 23884727 

  14. 14 Agarwal R , Bouldin JM , Light RP , Garg A . Inferior vena cava diameter and left atrial diameter measure volume but not dry weight . Clin J Am Soc Nephrol . 2011 ; 6 ( 5 ): 1066 – 1072 . 10.2215/CJN.09321010 21330484 

  15. 15 Passauer J , Petrov H , Schleser A , Leicht J , Pucalka K . Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: a cross-sectional study . Nephrol Dial Transplant . 2010 ; 25 ( 2 ): 545 – 551 . 10.1093/ndt/gfp517 19808949 

  16. 16 Chamney PW , Krämer M , Rode C , Kleinekofort W , Wizemann V . A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance . Kidney Int . 2002 ; 61 ( 6 ): 2250 – 2258 . 10.1046/j.1523-1755.2002.00377.x 12028467 

  17. 17 Gupta A , Liu T , Shepherd S , Paiva W . Correction: Using Statistical and Machine Learning Methods to Evaluate the Prognostic Accuracy of SIRS and qSOFA . Healthc Inform Res . 2018 ; 24 ( 3 ): 250 . 10.4258/hir.2018.24.3.250 30109159 

  18. 18 Desautels T , Hoffman J , Barton C , Mao Q , Jay M , Calvert J , et al . Pediatric severe sepsis prediction using machine learning . bioRxiv . 2017 : 223289 . 

  19. 19 Arefan D , Mohamed AA , Berg WA , Zuley ML , Sumkin JH , Wu S . Deep learning modeling using normal mammograms for predicting breast cancer risk . Med Phys . 2020 ; 47 ( 1 ): 110 – 118 . 10.1002/mp.13886 31667873 

  20. 20 Ke G , Meng Q , Finley T , Wang T , Chen W , Ma W , et al ., editors. Lightgbm: A highly efficient gradient boosting decision tree . Adv Neural Inf Process Syst ; 2017 . 

  21. 21 Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; 2016 August; San Francisco California USA: Association for Computing Machinery, New York, NY, United States. 

  22. 22 Ho TK, editor Random decision forests. Proceedings of 3rd international conference on document analysis and recognition; 1995 Aug 14–16; Montreal, Quebec, Canada, Canada: IEEE; 2002. 

  23. 23 Jaeger JQ , Mehta RL . Assessment of dry weight in hemodialysis: an overview . J Am Soc Nephrol . 1999 ; 10 ( 2 ): 392 – 403 . 10215341 

  24. 24 Lee SW , Song JH , Kim GA , Lim HJ , Kim M-J . Plasma brain natriuretic peptide concentration on assessment of hydration status in hemodialysis patient . Am J Kidney Dis . 2003 ; 41 ( 6 ): 1257 – 1266 . 10.1016/s0272-6386(03)00358-5 12776279 

  25. 25 Ando Y , Yanagiba S , Asano Y . The inferior vena cava diameter as a marker of dry weight in chronic hemodialyzed patients . Artificial Organs . 1995 ; 19 ( 12 ): 1237 – 1242 . 10.1111/j.1525-1594.1995.tb02292.x 8967881 

  26. 26 Cox-Reijven PL , Kooman JP , Soeters PB , van der Sande FM , Leunissen KM . Role of bioimpedance spectroscopy in assessment of body water compartments in hemodialysis patients . Am J Kidney Dis . 2001 ; 38 ( 4 ): 832 – 838 . 10.1053/ajkd.2001.27703 11576887 

  27. 27 Dumler F . Hypoalbuminemia is a marker of overhydration in chronic maintenance patients on dialysis . ASAIO J . 2003 ; 49 ( 3 ): 282 – 286 . 10.1097/01.mat.0000065465.52748.bb 12790376 

  28. 28 Zaki DS , Mohamed RR , Mohammed NA , Abdel-Zaher RB . Assessment of malnutrition status in hemodialysis patients . Clinical Medicine and Diagnostics . 2019 ; 1 : 0.20 . 

  29. 29 Jones CH , Akbani H , Croft DC , Worth DP . The relationship between serum albumin and hydration status in hemodialysis patients . J Ren Nutr . 2002 ; 12 ( 4 ): 209 – 212 . 10.1053/jren.2002.35295 12382212 

  30. 30 Garagarza C , Valente A , Caetano C , Oliveira T , Ponce P , Silva AP . Hypophosphatemia: nutritional status, body composition, and mortality in hemodialysis patients . International urology nephrology . 2017 ; 49 ( 7 ): 1243 – 1250 . 10.1007/s11255-017-1558-2 28265965 

  31. 31 Hung SC , Kuo KL , Peng CH , Wu CH , Wang YC , Tarng DC . Association of fluid retention with anemia and clinical outcomes among patients with chronic kidney disease . J Am Heart Assoc . 2015 ; 4 ( 1 ): e001480 . 10.1161/JAHA.114.001480 25559015 

  32. 32 Androne A-S , Katz SD , Lund L , LaManca J , Hudaihed A , Hryniewicz K , et al . Hemodilution is common in patients with advanced heart failure . Circ . 2003 ; 107 ( 2 ): 226 – 229 . 10.1161/01.cir.0000052623.16194.80 12538419 

  33. 33 Patel SS , Molnar MZ , Tayek JA , Ix JH , Noori N , Benner D , et al . Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature . J Cachexia Sarcopenia Muscle . 2013 ; 4 ( 1 ): 19 – 29 . 10.1007/s13539-012-0079-1 22777757 

  34. 34 Molnar MZ , Streja E , Kovesdy CP , Bunnapradist S , Sampaio MS , Jing J , et al . Associations of body mass index and weight loss with mortality in transplant‐waitlisted maintenance hemodialysis patients . Am J Transplant . 2011 ; 11 ( 4 ): 725 – 736 . 10.1111/j.1600-6143.2011.03468.x 21446975 

  35. 35 Vinge E , Lindergård B , Nilsson–Ehle P , Grubb A . Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults . Scand J Clin Lab Invest . 1999 ; 59 ( 8 ): 587 – 592 . 10.1080/00365519950185076 10691049 

  36. 36 Nakhoul GN , Huang H , Arrigain S , Jolly SE , Schold JD , Nally JV Jr , et al . Serum potassium, end-stage renal disease and mortality in chronic kidney disease . J Am Soc Nephrol . 2015 ; 41 ( 6 ): 456 – 463 . 10.1159/000437151 26228532 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로