$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Enantioselective Mixed Matrix Membranes for Chiral Resolution 원문보기

Membranes, v.11 no.4, 2021년, pp.279 -   

Choi, Hwa-Jin (Department of Chemical and Molecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) ,  Ahn, Yun-Ho (hwajinchoi@kaist.ac.kr) ,  Koh, Dong-Yeun (Department of Chemical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

Abstract AI-Helper 아이콘AI-Helper

Most pharmaceuticals are stereoisomers that each enantiomer shows dramatically different biological activity. Therefore, the production of optically pure chemicals through sustainable and energy-efficient technology is one of the main objectives in the pharmaceutical industry. Membrane-based separat...

Keyword

참고문헌 (102)

  1. 1. Jirage K.B. Martin C.R. New developments in membrane-based separations Trends Biotechnol. 1999 17 197 200 10.1016/S0167-7799(98)01296-7 10322444 

  2. 2. Xue Y.-P. Cao C.-H. Zheng Y.-G. Enzymatic asymmetric synthesis of chiral amino acids Chem. Soc. Rev. 2018 47 1516 1561 10.1039/C7CS00253J 29362736 

  3. 3. Mikami K. Matsukawa S. Asymmetric synthesis by enantiomer-selective activation of racemic catalysts Nature 1997 385 613 615 10.1038/385613a0 

  4. 4. Park Y. Chang S. Asymmetric formation of gamma-lactams via C-H amidation enabled by chiral hydrogen-bond-donor catalysts Nat. Catal. 2019 2 219 227 10.1038/s41929-019-0230-x 

  5. 5. Pasteur L. Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire Annales de chimie et de physique 1848 24 442 459 

  6. 6. Collet A. Brienne M.J. Jacques J. Optical resolution by direct crystallization of enantiomer mixtures Chem. Rev. 1980 80 215 230 10.1021/cr60325a001 

  7. 7. Ghanem A. Aboul-Enein H.Y. Application of lipases in kinetic resolution of racemates Chirality 2004 17 1 15 10.1002/chir.20089 15515046 

  8. 8. Schoemaker H.E. Mink D. Wubbolts M.G. Dispelling the myths--biocatalysis in industrial synthesis Science 2003 299 1694 1697 10.1126/science.1079237 12637735 

  9. 9. Chen X. Yamamoto C. Okamoto Y. Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography Pure Appl. Chem. 2007 79 1561 1573 10.1351/pac200779091561 

  10. 10. Francotte E.R. Polysaccharide Derivatives as Unique Chiral Selectors for Enantioselective Chromatography Chimia 2017 71 430 450 10.2533/chimia.2017.430 28779767 

  11. 11. Ikai T. Okamoto Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography Chem. Rev. 2009 109 6077 6101 10.1021/cr8005558 19645486 

  12. 12. Shen J. Okamoto Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers Chem. Rev. 2016 116 1094 1138 10.1021/acs.chemrev.5b00317 26402470 

  13. 13. Yu Y. Wood K.R. Liu Y.A. Simulation and Comparison of Operational Modes in Simulated Moving Bed Chromatography Ind. Eng. Chem. Res. 2015 54 11576 11591 10.1021/acs.iecr.5b02545 

  14. 14. Sholl D.S. Lively R.P. Seven chemical separations to change the world Nature 2016 532 435 437 10.1038/532435a 27121824 

  15. 15. Jue M.L. Breedveld V. Lively R.P. Defect-free PIM-1 hollow fiber membranes J. Memb. Sci. 2017 530 33 41 10.1016/j.memsci.2017.02.012 

  16. 16. Xie R. Chu L.-Y. Deng J.-G. Membranes and membrane processes for chiral resolution Chem. Soc. Rev. 2008 37 1243 1263 10.1039/b713350b 18497936 

  17. 17. Koh D.-Y. McCool B.A. Deckman H.W. Lively R.P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes Science 2016 353 804 807 10.1126/science.aaf1343 27540170 

  18. 18. Maruyama A. Adachi N. Takatsuki T. Torii M. Sanui K. Ogata N. Enantioselective permeation of α-amino acid isomers through poly (amino acid)-derived membranes Macromolecules 1990 23 2748 2752 10.1021/ma00212a027 

  19. 19. Yashima E. Noguchi J. Okamoto Y. Enantiomer enrichment of oxprenolol through cellulose tris(3,5-dimethylphenylcarbamate) membrane J. Appl. Polym. Sci. 1994 54 1087 1091 10.1002/app.1994.070540811 

  20. 20. Aoki T. Maruyama A. Shinohara K.-I. Oikawa E. Optical Resolution by Use of Surface-Modified Poly(methyl methacrylate) Membrane Containing (?)-Oligomethyl(10-pinanyl)siloxane Polym. J. 1995 27 547 550 10.1295/polymj.27.547 

  21. 21. Aoki T. Shinohara K.-I. Kaneko T. Oikawa E. Enantioselective Permeation of Various Racemates through an Optically Active Poly1-[dimethyl(10-pinanyl)silyl]-1-propyne Membrane Macromolecules 1996 29 4192 4198 10.1021/ma9517254 

  22. 22. Aoki T. Ohshima M. Shinohara K.I. Kaneko T. Oikawa E. Enantioselective permeation of racemates through a solid (+)-poly2-dimethyl(10-pinanyl)silyl] norbornadiene membrane Polymer 1997 38 235 238 10.1016/S0032-3861(96)00630-1 

  23. 23. Lee N.H. Frank C.W. Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membranes Polymer 2002 43 6255 6262 10.1016/S0032-3861(02)00555-4 

  24. 24. Tobis J. Boch L. Thomann Y. Tiller J.C. Amphiphilic polymer conetworks as chiral separation membranes J. Memb. Sci. 2011 372 219 227 10.1016/j.memsci.2011.02.004 

  25. 25. Jiang Y.-D. Zhang J.-H. Xie S.-M. Lv Y.-C. Zhang M. Ma C. Yuan L.-M. Chiral separation of D,L-tyrosine through nitrocellulose membrane J. Appl. Polym. Sci. 2011 124 5187 5193 10.1002/app.33929 

  26. 26. Weng X. Baez J.E. Khiterer M. Hoe M.Y. Bao Z. Shea K.J. Chiral polymers of intrinsic microporosity: Selective membrane permeation of enantiomers Angew. Chem. Int. Ed Engl. 2015 54 11214 11218 10.1002/anie.201504934 26352031 

  27. 27. Liu B. Shekhah O. Arslan H.K. Liu J. Woll C. Fischer R.A. Enantiopure Metal-Organic Framework Thin Films: Oriented SURMOF Growth and Enantioselective Adsorption Angew. Chem. Int. Ed. 2012 51 807 810 10.1002/anie.201104240 

  28. 28. Wang W. Dong X. Nan J. Jin W. Hu Z. Chen Y. Jiang J. A homochiral metal?organic framework membrane for enantioselective separation Chem. Commun. 2012 48 7022 7024 10.1039/c2cc32595k 

  29. 29. Huang K. Dong X. Ren R. Jin W. Fabrication of homochiral metal-organic framework membrane for enantioseparation of racemic diols AIChE J. 2013 59 4364 4372 10.1002/aic.14194 

  30. 30. Kang Z. Xue M. Fan L. Ding J. Guo L. Gao L. Qiu S. “Single nickel source” in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties Chem. Commun. 2013 49 10569 10571 10.1039/c3cc42376j 

  31. 31. Chan J.Y. Zhang H. Nolvachai Y. Hu Y. Zhu H. Forsyth M. Gu Q. Hoke D.E. Zhang X. Marriot P.J. Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation Angew. Chem. Int. Ed. 2018 57 17130 17134 10.1002/anie.201810925 

  32. 32. Jue M.L. Koh D.-Y. McCool B.A. Lively R.P. mEnabling Widespread Use of Microporous Materials for Challenging Organic Solvent Separations Chem. Mater. 2017 29 9863 9876 10.1021/acs.chemmater.7b03456 

  33. 33. McGuinness E.K. Zhang F. Ma Y. Lively R.P. Losego M.D. Vapor Phase Infiltration of Metal Oxides into Nanoporous Polymers for Organic Solvent Separation Membranes Chem. Mater. 2019 31 5509 5518 10.1021/acs.chemmater.9b01141 

  34. 34. Jia Z. Wu G. Metal-organic frameworks based mixed matrix membranes for pervaporation Microporous Mesoporous Mater. 2016 235 151 159 10.1016/j.micromeso.2016.08.008 

  35. 35. Mahajan R. Koros W.J. Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials Ind. Eng. Chem. Res. 2000 39 2692 2696 10.1021/ie990799r 

  36. 36. Campbell J. Szekely G. Davies R.P. Braddock D.C. Livingston A.G. Fabrication of hybrid polymer/metal organic framework membranes: Mixed matrix membranes versus in situ growth J. Mater. Chem. A Mater. Energy Sustain. 2014 2 9260 9271 10.1039/C4TA00628C 

  37. 37. Campbell J. Burgal J.D.S. Szekely G. Davies R.P. Braddock D.C. Livingston A. Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection J. Memb. Sci. 2016 503 166 176 10.1016/j.memsci.2016.01.024 

  38. 38. Hyun T. Jeong J. Chae A. Kim Y.K. Koh D.-Y. 2D-enabled membranes: Materials and beyond BMC Chem. Eng. 2019 1 1 26 10.1186/s42480-019-0012-x 

  39. 39. Singh A. Koros W.J. Significance of Entropic Selectivity for Advanced Gas Separation Membranes Ind. Eng. Chem. Res. 1996 35 1231 1234 10.1021/ie950559l 

  40. 40. Ent E.M. Riet K. Keurentjes J.T.F. Padt A. Design criteria for dense permeation-selective membranes for enantiomer separations J. Membr. Sci. 2001 185 207 221 

  41. 41. Ulbricht M. Membrane separations using molecularly imprinted polymers J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004 804 113 125 10.1016/j.jchromb.2004.02.007 15093165 

  42. 42. Lu Y. Chan J.Y. Zhang H. Li X. Nolvachai Y. Marriott P.J. Zhang X. Simon G.P. Holl M.M.B. Wang H. Cyclodextrin metal-organic framework-polymer composite membranes towards ultimate and stable enantioselectivity J. Membr. Sci. 2021 620 118956 10.1016/j.memsci.2020.118956 

  43. 43. Gogoi M. Goswami R. Ingole P.G. Hazarika S. Selective permeation of L-tyrosine through functionalized single-walled carbon nanotube thin film nanocomposite membrane Sep. Purif. Technol. 2020 233 116061 10.1016/j.seppur.2019.116061 

  44. 44. Ke J. Zhang Y. Zhang X. Liu Y. Ji Y. Chen J. Novel chiral composite membrane prepared via the interfacial polymerization of diethylamino-beta-cyclodextrin for the enantioseparation of chiral drugs J. Memb. Sci. 2020 597 117635 10.1016/j.memsci.2019.117635 

  45. 45. Gu L. Chen Q. Li X. Meng C. Liu H. Enantioseparation processes and mechanisms in functionalized graphene membranes: Facilitated or retarded transport? Chirality 2020 32 842 853 10.1002/chir.23190 32073697 

  46. 46. Lee Y.H. Jeong J. Kim K. Hyun T. Jamal A. Koh D.-Y. Materials in Scalable Shapes: Fibers Sorbents Chem. Mater. 2020 32 7081 7104 10.1021/acs.chemmater.0c00183 

  47. 47. Nickerl G. Henschel A. Grunker R. Gedrich K. Kaskel S. Chiral metal-organic frameworks and their application in asymmetric catalysis and stereoselective separation Chem. Ing. Tech. 2011 83 90 103 10.1002/cite.201000188 

  48. 48. Tanaka K. Muraoka T. Otubo Y. Takahashi H. Ohnishi A. HPLC enantioseparation on a homochiral MOF?silica composite as a novel chiral stationary phase RSC Adv. 2016 6 21293 21301 10.1039/C5RA26520G 

  49. 49. Peng Y. Gong T. Zhang K. Lin X. Liu Y. Jiang J. Cui Y. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation Nat. Commun. 2014 5 4406 10.1038/ncomms5406 25030529 

  50. 50. Xie S. Hu C. Li L. Zhang J. Fu N. Wang B. Yuan L. Homochiral metal-organic framework for HPLC separation of enantiomers Microchem. J. 2018 139 487 491 10.1016/j.microc.2018.03.035 

  51. 51. Corella-Ochoa M.N. Tapia J.B. Rubin H.N. Lillo V. Gonzalez-Cobos J. Nunez-Rico J.L. Balestra S.R. Almora-Barrios N. Lledos M. Guell-Bara A. Homochiral Metal?Organic Frameworks for Enantioselective Separations in Liquid Chromatography J. Am. Chem. Soc. 2019 141 14306 14316 10.1021/jacs.9b06500 31426632 

  52. 52. Tang H. Yang K. Wang K.Y. Meng Q. Wu F. Wu X. Li Y. Zhang W. Luo Y. Zhu C. Engineering a homochiral metal?organic framework based on an amino acid for enantioselective separation Chem. Commun. 2020 56 9016 9019 10.1039/D0CC00897D 

  53. 53. Kuang X. Ma Y. Su H. Zhang J. Dong Y.-B. Tang B. High-Performance Liquid Chromatographic Enantioseparation of Racemic Drugs Based on Homochiral Metal?Organic Framework Anal. Chem. 2014 86 1277 1281 10.1021/ac403674p 24380495 

  54. 54. Yao R.-X. Fu H.-H. Yu B. Zhang X.-M. Chiral metal?organic frameworks constructed from four-fold helical chain SBUs for enantioselective recognition of α-hydroxy/amino acids Inorg. Chem. Front. 2018 5 153 159 10.1039/C7QI00615B 

  55. 55. Tanaka K. Kawakita T. Morawiak M. Urbanczyk-Lipkowska Z. A novel homochiral metal?organic framework with an expanded open cage based on (R)-3,3′-bis(6-carboxy-2-naphthyl)-2,2′-dihydroxy-1,1′-binaphthyl: Synthesis, X-ray structure and efficient HPLC enantiomer separation CrystEngComm 2019 21 487 493 10.1039/C8CE01791C 

  56. 56. Suh K. Yutkin M.P. Dybtsev D.N. Fedin V.P. Kim K. Enantioselective sorption of alcohols in a homochiral metal-organic framework Chem. Commun. 2012 48 513 515 10.1039/C1CC16209H 22127026 

  57. 57. Liu J. Wang F. Ding Q.-R. Zhang J. Synthesis of an Enantipure Tetrazole-Based Homochiral CuI,II-MOF for Enantioselective Separation Inorg. Chem. 2016 55 12520 12522 10.1021/acs.inorgchem.6b02514 27989193 

  58. 58. Wu S.-T. Wu Y.R. Kang Q.Q. Zhang H. Long L.S. Zheng Z. Huang R.B. Zheng L.S. Chiral symmetry breaking by chemically manipulating statistical fluctuation in crystallization Angew. Chem. Int. Engl. 2007 46 8475 8479 10.1002/anie.200703443 17912730 

  59. 59. Zhao Y.-W. Wang Y. Zhang X.-M. Homochiral MOF as Circular Dichroism Sensor for Enantioselective Recognition on Nature and Chirality of Unmodified Amino Acids ACS Appl. Mater. Interfaces 2017 9 20991 20999 10.1021/acsami.7b04640 28541029 

  60. 60. Das S. Xu S. Ben T. Qiu S. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks Angew. Chem. 2018 130 8765 8769 10.1002/ange.201804383 

  61. 61. Wang H. Zhao S. Liu Y. Yao R. Wang X. Cao Y. Ma D. Zou M. Cao A. Feng X. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations Nat. Commun. 2019 10 1 9 10.1038/s41467-019-12114-8 30602773 

  62. 62. Lu Y. Zhang H. Chan J.Y. Ou R. Zhu H. Forsyth M. Marijanovic E.M. Doherty C.M. Marriott P.J. Holl M.M. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules Angew. Chem. Int. Engl. 2019 58 16928 16935 10.1002/anie.201910408 31535784 

  63. 63. Forman E.M. Baniani A. Fan L. Ziegler K.J. Zhou E. Zhang F. Lively R.P. Vasenkov S. Relationship between ethane and ethylene diffusion inside ZIF-11 crystals confined in polymers to form mixed-matrix membranes J. Membr. Sci. 2020 593 117440 10.1016/j.memsci.2019.117440 32863548 

  64. 64. Sujan A.R. Koh D.Y. Zhu G. Babu V.P. Stephenson N. Rosinski A. Du H. Luo Y. Koros W.J. Lively R.P. High-Temperature Activation of Zeolite-Loaded Fiber Sorbents Ind. Eng. Chem. Res. 2018 57 11757 11766 10.1021/acs.iecr.8b02210 

  65. 65. Hartlieb K.J. Holcroft J.M. Moghadam P.Z. Vermeulen N.A. Algaradah M.M. Nassar M.S. Botros Y.Y. Snurr R.Q. Stoddart J.F. CD-MOF: A Versatile Separation Medium J. Am. Chem. Soc. 2016 138 2292 2301 10.1021/jacs.5b12860 26812983 

  66. 66. Ding S.-Y. Wang W. Covalent organic frameworks (COFs): From design to applications Chem. Soc. Rev. 2013 42 548 568 10.1039/C2CS35072F 23060270 

  67. 67. Wang H. Zeng Z. Xu P. Li L. Zeng G. Xiao R. Tang Z. Huang D. Tang L. Lai C. Recent progress in covalent organic framework thin films: Fabrications, applications and perspectives Chem. Soc. Rev. 2019 48 488 516 10.1039/C8CS00376A 30565610 

  68. 68. Yuan S. Li X. Zhu J. Zhang G. van Puyvelde P. van der Bruggen B. Covalent organic frameworks for membrane separation Chem. Soc. Rev. 2019 48 2665 2681 10.1039/C8CS00919H 31025660 

  69. 69. Han X. Zhang J. Huang J. Wu X. Yuan D. Liu Y. Cui Y. Chiral induction in covalent organic frameworks Nat. Commun. 2018 9 1294 10.1038/s41467-018-03689-9 29615606 

  70. 70. Zhuo S. Zhang X. Luo H. Wang X. Ji Y. The Application of Covalent Organic Frameworks for Chiral Chemistry Macromol. Rapid Commun. 2020 41 e2000404 10.1002/marc.202000404 32935899 

  71. 71. Ma W. Zheng Q. He Y. Li G. Guo W. Lin Z. Zhang L. Size-Controllable Synthesis of Uniform Spherical Covalent Organic Frameworks at Room Temperature for Highly Efficient and Selective Enrichment of Hydrophobic Peptides J. Am. Chem. Soc. 2019 141 18271 18277 10.1021/jacs.9b09189 31656073 

  72. 72. Wu X. Han X. Xu Q. Liu Y. Yuan C. Yang S. Liu Y. Jiang J. Cui Y. Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing J. Am. Chem. Soc. 2019 141 7081 7089 10.1021/jacs.9b02153 30971083 

  73. 73. Zhang S. Zheng Y. An H. Aguila B. Yang C.X. Dong Y. Xie W. Cheng P. Zhang Z. Chen Y. Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation Angew. Chem. Int. Engl. 2018 57 16754 16759 10.1002/anie.201810571 30359485 

  74. 74. Yuan C. Wu X. Gao R. Han X. Liu Y. Long Y. Cui Y. Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids J. Am. Chem. Soc. 2019 141 20187 20197 10.1021/jacs.9b10007 31789030 

  75. 75. Li Y. Yu J. New stories of zeolite structures: Their descriptions, determinations, predictions, and evaluations Chem. Rev. 2014 114 7268 7316 10.1021/cr500010r 24844459 

  76. 76. Corma A. Diaz-Cabanas M.J. Martinez-Triguero J. Rey F. Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst Nature 2002 418 514 517 10.1038/nature00924 12152074 

  77. 77. McCusker L.B. Zeolite structure analysis using powder diffraction data Mater. Sci. Forum 1993 133 423 436 10.4028/www.scientific.net/MSF.133-136.423 

  78. 78. Tong M. Zhang D. Fan W. Xu J. Zhu L. Guo W. Yan W. Yu J. Qiu S. Wang J. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route Sci. Rep. 2015 5 11521 10.1038/srep11521 26096214 

  79. 79. Dryzun C. Mastai Y. Shvalb A. Avnir D. Chiral silicate zeolites J. Mater. Chem. 2009 19 2062 10.1039/b817497k 

  80. 80. Rojas A. Camblor M.A. A pure silica chiral polymorph with helical pores Angew. Chem. Int. Engl. 2012 51 3854 3856 10.1002/anie.201108753 

  81. 81. Lu T. Yan W. Xu R. Chiral zeolite beta: Structure, synthesis, and application Inorg. Chem. Front. 2019 6 1938 1951 10.1039/C9QI00574A 

  82. 82. urkovi L. Cerjan-Stefanovi ?. Filipan T. Metal ion exchange by natural and modified zeolites Water Res. 1997 31 1379 1382 10.1016/S0043-1354(96)00411-3 

  83. 83. Erp T.S. Caremans T.P. Dubbeldam D. Martin-Calvo A. Calero S. Martens J.A. Enantioselective adsorption in achiral zeolites Angew. Chem. 2010 49 3010 3013 20301152 

  84. 84. Caremans T.P. van Erp T.S. Dubbeldam D. Castillo J.M. Martens J.A. Calero S. Enantioselective Adsorption Characteristics of Aluminum-Substituted MFI Zeolites Chem. Mater. 2010 22 4591 4601 10.1021/cm100672u 

  85. 85. Chung T.-S. Jiang L.Y. Li Y. Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation Prog. Polym. Sci. 2007 32 483 507 10.1016/j.progpolymsci.2007.01.008 

  86. 86. Goh P.S. Ismail A.F. Sanip S.M. Ng B.C. Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation Sep. Purif. Technol. 2011 81 243 264 10.1016/j.seppur.2011.07.042 

  87. 87. Zhang J.-H. Xie S.-M. Zi M. Yuan L.-M. Recent advances of application of porous molecular cages for enantioselective recognition and separation J. Sep. Sci. 2020 43 134 149 10.1002/jssc.201900762 31587485 

  88. 88. Wang Z.-M. Cui Y.-Y. Yang C.-X. Yan X.-P. Porous Organic Nanocages CC3 and CC3?OH for Chiral Gas Chromatography ACS Appl. Nano Mater. 2020 3 479 485 10.1021/acsanm.9b02053 

  89. 89. Wang B.-J. Duan A.-H. Zhang J.-H. Xie S.-M. Cao Q.-E. Yuan L.-M. An Enantioselective Potentiometric Sensor for 2-Amino-1-Butanol Based on Chiral Porous Organic Cage CC3-R Molecules 2019 24 420 10.3390/molecules24030420 

  90. 90. Zhang J.-H. Xie S.-M. Wang B.-J. He P.-G. Yuan L.-M. Highly selective separation of enantiomers using a chiral porous organic cage J. Chromatogr. A 2015 1426 174 182 10.1016/j.chroma.2015.11.038 26632517 

  91. 91. Chen L. Reiss P.S. Chong S.Y. Holden D. Jelfs K.E. Hasell T. Little M.A. Kewley A. Briggs M.E. Stephenson A. Separation of rare gases and chiral molecules by selective binding in porous organic cages Nat. Mater. 2014 13 954 960 10.1038/nmat4035 25038731 

  92. 92. Zhu G. Zhang F. Rivera M.P. Hu X. Zhang G. Jones C.W. Lively R.P. Molecularly Mixed Composite Membranes for Advanced Separation Processes Angew. Chem. Int. Engl. 2019 58 2638 2643 10.1002/anie.201811341 

  93. 93. Bushell A.F. Budd P.M. Attfield M.P. Jones J.T. Hasell T. Cooper A.I. Bernardo P. Bazzarelli F. Clarizia G. Jansen J.C. Nanoporous organic polymer/cage composite membranes Angew. Chem. Int. Engl. 2013 52 1253 1256 10.1002/anie.201206339 

  94. 94. Zhou Z. Xiao Y. Hatton T.A. Chung T.-S. Effects of spacer arm length and benzoation on enantioseparation performance of β-cyclodextrin functionalized cellulose membranes J. Memb. Sci. 2009 339 21 27 10.1016/j.memsci.2009.04.015 

  95. 95. Wang Y. Wu N. Wang Y. Ma H. Zhang J. Xu L. Albolkany M.K. Liu B. Graphite phase carbon nitride based membrane for selective permeation Nat. Commun. 2019 10 2500 10.1038/s41467-019-10381-z 31175298 

  96. 96. Meng C. Chen Q. Tan H. Sheng Y. Liu H. Role of filled PLGA in improving enantioselectivity of Glu-GO/PLGA composite membranes J. Membr. Sci. 2018 555 398 406 10.1016/j.memsci.2018.03.040 

  97. 97. Meng C. Sheng Y. Chen Q. Tan H. Liu H. Exceptional chiral separation of amino acid modified graphene oxide membranes with high-flux J. Membr. Sci. 2017 526 25 31 10.1016/j.memsci.2016.12.019 

  98. 98. Meng C. Chen Q. Li X. Liu H. Controlling covalent functionalization of graphene oxide membranes to improve enantioseparation performances J. Membr. Sci. 2019 582 83 90 10.1016/j.memsci.2019.03.087 

  99. 99. Meng C. Zhang S. Chen Q. Li X. Liu H. Influence of Host-Guest Interaction between Chiral Selectors and Probes on the Enantioseparation Properties of Graphene Oxide Membranes ACS Appl. Mater. Interfaces 2020 12 10893 10901 10.1021/acsami.0c00898 32045196 

  100. 100. Qian Q. Wu A.X. Chi W.S. Asinger P.A. Lin S. Hypsher A. Smith Z.P. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility ACS Appl. Mater. Interfaces 2019 11 31257 31269 10.1021/acsami.9b07500 31362491 

  101. 101. Zhu G. O’Nolan D. Lively R.P. Molecularly Mixed Composite Membranes: Challenges and Opportunities Chemistry 2020 26 3464 3473 10.1002/chem.201903519 31549449 

  102. 102. Kewley A. Stephenson A. Chen L. Briggs M.E. Hasell T. Cooper A.I. Porous Organic Cages for Gas Chromatography Separations Chem. Mater. 2015 27 3207 3210 10.1021/acs.chemmater.5b01112 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로