최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Advanced energy materials, v.11 no.17, 2021년, pp.2003735 -
Singh, Vikram (Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐) , Kim, Jaewook (ro, Yuseong‐) , Kang, Bora (gu Daejeon 34141 Republic of Korea) , Moon, Joonhee (Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐) , Kim, Sujung (ro, Yuseong‐) , Kim, Woo Youn (gu Daejeon 34141 Republic of Korea) , Byon, Hye Ryung (Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐)
AbstractCovalent organic frameworks (COFs) have been considered a potentially versatile electrode structure if they are made highly conductive and flexible to stabilize the redox functionality. Although conceptually plausible, COF‐based electrodes have rarely satisfied high capacity, cyclabil...
Ellis, Brian L., Lee, Kyu Tae, Nazar, Linda F.. Positive Electrode Materials for Li-Ion and Li-Batteries†. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 691-714.
Li, Wangda, Song, Bohang, Manthiram, Arumugam. High-voltage positive electrode materials for lithium-ion batteries. Chemical Society reviews, vol.46, no.10, 3006-3059.
Etacheri, Vinodkumar, Marom, Rotem, Elazari, Ran, Salitra, Gregory, Aurbach, Doron. Challenges in the development of advanced Li-ion batteries: a review. Energy & environmental science, vol.4, no.9, 3243-3262.
Goodenough, John B., Park, Kyu-Sung. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, vol.135, no.4, 1167-1176.
Liang, Yanliang, Yao, Yan. Positioning Organic Electrode Materials in the Battery Landscape. Joule, vol.2, no.9, 1690-1706.
Lu, Yong, Chen, Jun. Prospects of organic electrode materials for practical lithium batteries. Nature reviews. Chemistry, vol.4, no.3, 127-142.
Lu, Yong, Zhang, Qiu, Li, Lin, Niu, Zhiqiang, Chen, Jun. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem, vol.4, no.12, 2786-2813.
Shea, John J., Luo, Chao. Organic Electrode Materials for Metal Ion Batteries. ACS applied materials & interfaces, vol.12, no.5, 5361-5380.
Chu, Steven, Cui, Yi, Liu, Nian. The path towards sustainable energy. Nature materials, vol.16, no.1, 16-22.
Larcher, D., Tarascon, J-M.. Towards greener and more sustainable batteries for electrical energy storage. Nature chemistry, vol.7, no.1, 19-29.
Huang, Ning, Wang, Ping, Jiang, Donglin. Covalent organic frameworks: a materials platform for structural and functional designs. Nature reviews. Materials, vol.1, no.10, 16068-.
Diercks, Christian S., Yaghi, Omar M.. The atom, the molecule, and the covalent organic framework. Science, vol.355, no.6328, eaal1585-.
Ma, Tianqiong, Kapustin, Eugene A., Yin, Shawn X., Liang, Lin, Zhou, Zhengyang, Niu, Jing, Li, Li-Hua, Wang, Yingying, Su, Jie, Li, Jian, Wang, Xiaoge, Wang, Wei David, Wang, Wei, Sun, Junliang, Yaghi, Omar M.. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, vol.361, no.6397, 48-52.
Evans, Austin M., Parent, Lucas R., Flanders, Nathan C., Bisbey, Ryan P., Vitaku, Edon, Kirschner, Matthew S., Schaller, Richard D., Chen, Lin X., Gianneschi, Nathan C., Dichtel, William R.. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, vol.361, no.6397, 52-57.
Jeong, Kihun, Park, Sodam, Jung, Gwan Yeong, Kim, Su Hwan, Lee, Yong-Hyeok, Kwak, Sang Kyu, Lee, Sang-Young. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. Journal of the American Chemical Society, vol.141, no.14, 5880-5885.
Xu, Qing, Tao, Shanshan, Jiang, Qiuhong, Jiang, Donglin. Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. Journal of the American Chemical Society, vol.140, no.24, 7429-7432.
Guo, Zhenbin, Zhang, Yuanyuan, Dong, Yu, Li, Jie, Li, Siwu, Shao, Pengpeng, Feng, Xiao, Wang, Bo. Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, vol.141, no.5, 1923-1927.
Wang, Shan, Wang, Qianyou, Shao, Pengpeng, Han, Yuzhen, Gao, Xing, Ma, Li, Yuan, Shuai, Ma, Xiaojie, Zhou, Junwen, Feng, Xiao, Wang, Bo. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, vol.139, no.12, 4258-4261.
Gu, Shuai, Wu, Shaofei, Cao, Lujie, Li, Minchan, Qin, Ning, Zhu, Jian, Wang, Zhiqiang, Li, Yingzhi, Li, Zhiqiang, Chen, Jingjing, Lu, Zhouguang. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. Journal of the American Chemical Society, vol.141, no.24, 9623-9628.
Vitaku, Edon, Gannett, Cara N., Carpenter, Keith L., Shen, Luxi, Abruña, Héctor D., Dichtel, William R.. Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. Journal of the American Chemical Society, vol.142, no.1, 16-20.
Bai, Linyi, Gao, Qiang, Zhao, Yanli. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.37, 14106-14110.
Sun, Tao, Xie, Jian, Guo, Wei, Li, Dong‐Sheng, Zhang, Qichun. Covalent-Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced energy materials, vol.10, no.19, 1904199-.
Yusran, Yusran, Fang, Qianrong, Valtchev, Valentin. Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced materials, vol.32, no.44, 2002038-.
Halder, Arjun, Ghosh, Meena, Khayum M, Abdul, Bera, Saibal, Addicoat, Matthew, Sasmal, Himadri Sekhar, Karak, Suvendu, Kurungot, Sreekumar, Banerjee, Rahul. Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors. Journal of the American Chemical Society, vol.140, no.35, 10941-10945.
Kandambeth, Sharath, Mallick, Arijit, Lukose, Binit, Mane, Manoj V., Heine, Thomas, Banerjee, Rahul. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. Journal of the American Chemical Society, vol.134, no.48, 19524-19527.
Jin, Enquan, Lan, Zhian, Jiang, Qiuhong, Geng, Keyu, Li, Guosheng, Wang, Xinchen, Jiang, Donglin. 2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. Chem, vol.5, no.6, 1632-1647.
10.1002/anie.201904291 X.Chen K.Geng R.Liu K. T.Tan Y.Gong Z.Li S.Tao Q.Jiang D.Jiang 2020 59 5050.
Angew. Chem., Int. Ed. Cusin L. 2021
10.1021/jacs.0c03418 K.Wang Z.Jia Y.Bai X.Wang S. E.Hodgkiss L.Chen S. Y.Chong X.Wang H.Yang Y.Xu F.Feng J. W.Ward A. I.Cooper 2020 142 11131.
Haase, Frederik, Troschke, Erik, Savasci, Gökcen, Banerjee, Tanmay, Duppel, Viola, Dörfler, Susanne, Grundei, Martin M. J., Burow, Asbjörn M., Ochsenfeld, Christian, Kaskel, Stefan, Lotsch, Bettina V.. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nature communications, vol.9, no.1, 2600-.
Waller, Peter J., AlFaraj, Yasmeen S., Diercks, Christian S., Jarenwattananon, Nanette N., Yaghi, Omar M.. Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, vol.140, no.29, 9099-9103.
Cai, Song-Liang, Zhang, Yue-Biao, Pun, Andrew B., He, Bo, Yang, Jinhui, Toma, Francesca M., Sharp, Ian D., Yaghi, Omar M., Fan, Jun, Zheng, Sheng-Run, Zhang, Wei-Guang, Liu, Yi. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical science, vol.5, no.12, 4693-4700.
Li, Hui, Chang, Jianhong, Li, Shanshan, Guan, Xinyu, Li, Daohao, Li, Cuiyan, Tang, Lingxue, Xue, Ming, Yan, Yushan, Valtchev, Valentin, Qiu, Shilun, Fang, Qianrong. Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, vol.141, no.34, 13324-13329.
Duhović, Selma, Dincă, Mircea. Synthesis and Electrical Properties of Covalent Organic Frameworks with Heavy Chalcogens. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.16, 5487-5490.
Cai, Songliang, Sun, Bing, Li, Xinle, Yan, Yilun, Navarro, Amparo, Garzón-Ruiz, Andrés, Mao, Haiyan, Chatterjee, Ruchira, Yano, Junko, Zhu, Chenhui, Reimer, Jeffrey A., Zheng, Shengrun, Fan, Jun, Zhang, Weiguang, Liu, Yi. Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS applied materials & interfaces, vol.12, no.16, 19054-19061.
Lu, Meng, Liu, Jiang, Li, Qiang, Zhang, Mi, Liu, Ming, Wang, Jin‐Lan, Yuan, Da‐Qiang, Lan, Ya‐Qian. Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O. Angewandte Chemie. international edition, vol.58, no.36, 12392-12397.
Li, Daohao, Li, Cuiyan, Zhang, Lijie, Li, Hui, Zhu, Liangkui, Yang, Dongjiang, Fang, Qianrong, Qiu, Shilun, Yao, Xiangdong. Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, vol.142, no.18, 8104-8108.
Sick, Torben, Hufnagel, Alexander G., Kampmann, Jonathan, Kondofersky, Ilina, Calik, Mona, Rotter, Julian M., Evans, Austin, Döblinger, Markus, Herbert, Simon, Peters, Kristina, Böhm, Daniel, Knochel, Paul, Medina, Dana D., Fattakhova-Rohlfing, Dina, Bein, Thomas. Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, vol.140, no.6, 2085-2092.
Samal, Mahalaxmi, Valligatla, Sreeramulu, Saad, Nabil A., Rao, M. Veeramohan, Rao, D. Narayana, Sahu, Rojalin, BiswalPresent address: Max-Planck-Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany. E-mail: b.biswal@fkf.mpg.de, Bishnu P.. A thiazolo[5,4-d]thiazole-bridged porphyrin organic framework as a promising nonlinear optical material. Chemical communications : Chem comm, vol.55, no.74, 11025-11028.
Wang, Yuancheng, Liu, Hui, Pan, Qingyan, Wu, Chenyu, Hao, Wenbo, Xu, Jie, Chen, Renzeng, Liu, Jian, Li, Zhibo, Zhao, Yingjie. Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. Journal of the American Chemical Society, vol.142, no.13, 5958-5963.
Kim, Min-Sung, Lee, Won-Jae, Paek, Seung-Min, Park, Jin Kuen. Covalent Organic Nanosheets as Effective Sodium-Ion Storage Materials. ACS applied materials & interfaces, vol.10, no.38, 32102-32111.
Electrochemical Reactions in Nonaqueous Systems Mann C. K. 1970
Sadler, Joe L., Bard, Allen J.. Electrochemical reduction of aromatic azo compounds. Journal of the American Chemical Society, vol.90, no.8, 1979-1989.
McClure, James E., Maricle, Donald L.. New dip-type thin-layer electrolysis cell. n-Value determinations in nonaqueous systems. Analytical chemistry, vol.39, no.2, 236-238.
Luo, Chao, Borodin, Oleg, Ji, Xiao, Hou, Singyuk, Gaskell, Karen J., Fan, Xiulin, Chen, Ji, Deng, Tao, Wang, Ruixing, Jiang, Jianjun, Wang, Chunsheng. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, vol.115, no.9, 2004-2009.
Luo, Chao, Ji, Xiao, Hou, Singyuk, Eidson, Nico, Fan, Xiulin, Liang, Yujia, Deng, Tao, Jiang, Jianjun, Wang, Chunsheng. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li‐Ion Batteries. Advanced materials, vol.30, no.23, 1706498-.
Chandra, Suman, Kundu, Tanay, Kandambeth, Sharath, BabaRao, Ravichandar, Marathe, Yogesh, Kunjir, Shrikant M., Banerjee, Rahul. Phosphoric Acid Loaded Azo (−NN−) Based Covalent Organic Framework for Proton Conduction. Journal of the American Chemical Society, vol.136, no.18, 6570-6573.
Tan, Ning, Xiao, Guyu, Yan, Deyue. Sulfonated Polybenzothiazoles: A Novel Candidate for Proton Exchange Membranes†. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 1022-1031.
Rao, M. Rajeswara, Fang, Yuan, De Feyter, Steven, Perepichka, Dmitrii F.. Conjugated Covalent Organic Frameworks via Michael Addition–Elimination. Journal of the American Chemical Society, vol.139, no.6, 2421-2427.
Luo, Zhiqiang, Liu, Luojia, Ning, Jiaxin, Lei, Kaixiang, Lu, Yong, Li, Fujun, Chen, Jun. A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithium‐Ion Batteries. Angewandte Chemie. international edition, vol.57, no.30, 9443-9446.
Yang, Dong-Hui, Yao, Zhao-Quan, Wu, Dihua, Zhang, Ying-Hui, Zhou, Zhen, Bu, Xian-He. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.47, 18621-18627.
Kim, Dong Jun, Yoo, Dong-Joo, Otley, Michael T., Prokofjevs, Aleksandrs, Pezzato, Cristian, Owczarek, Magdalena, Lee, Seung Jong, Choi, Jang Wook, Stoddart, J. Fraser. Rechargeable aluminium organic batteries. Nature energy, vol.4, no.1, 51-59.
Ogihara, Nobuhiro, Itou, Yuichi, Sasaki, Tsuyoshi, Takeuchi, Yoji. Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.9, 4612-4619.
Yoo, H.D., Jang, J.H., Ryu, J.H., Park, Y., Oh, S.M.. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. Journal of power sources, vol.267, 411-420.
Zhao, Genfu, Zhang, Yuhao, Gao, Zhihui, Li, Huani, Liu, Shuming, Cai, Sheng, Yang, Xiaofei, Guo, Hong, Sun, Xueliang. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS energy letters, vol.5, 1022-1031.
Chen, Xiudong, Zhang, Hang, Ci, Chenggang, Sun, Weiwei, Wang, Yong. Few-Layered Boronic Ester Based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries. ACS nano, vol.13, no.3, 3600-3607.
Ma, J. C., Dougherty, D. A.. The Cation−&pgr; Interaction. Chemical reviews, vol.97, no.5, 1303-1324.
10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.0.CO;2-B
Liang, Kang, Ricco, Raffaele, Doherty, Cara M., Styles, Mark J., Bell, Stephen, Kirby, Nigel, Mudie, Stephen, Haylock, David, Hill, Anita J., Doonan, Christian J., Falcaro, Paolo. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature communications, vol.6, 7240-.
Kunitski, Maksim, Eicke, Nicolas, Huber, Pia, Köhler, Jonas, Zeller, Stefan, Voigtsberger, Jörg, Schlott, Nikolai, Henrichs, Kevin, Sann, Hendrik, Trinter, Florian, Schmidt, Lothar Ph. H., Kalinin, Anton, Schöffler, Markus S., Jahnke, Till, Lein, Manfred, Dörner, Reinhard. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nature communications, vol.10, no.1, 1-.
Kresse, G., Furthmüller, J.. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical review. B, Condensed matter, vol.54, no.16, 11169-11186.
Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.
Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review. B, Condensed matter and materials physics, vol.59, no.3, 1758-1775.
Heyd, Jochen, Scuseria, Gustavo E., Ernzerhof, Matthias. Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, vol.118, no.18, 8207-8215.
Krukau, Aliaksandr V., Vydrov, Oleg A., Izmaylov, Artur F., Scuseria, Gustavo E.. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of chemical physics, vol.125, no.22, 224106-.
Monkhorst, Hendrik J., Pack, James D.. Special points for Brillouin-zone integrations. Physical review B, Solid state, vol.13, no.12, 5188-5192.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.