최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of precision engineering and manufacturing : Green technology, v.8 no.3, 2021년, pp.945 - 954
Mishra, Abhinay , Ferhan, Abdul Rahim , Ho, Chee Meng Benjamin , Lee, JooHyun , Kim, Dong-Hwan , Kim, Young-Jin , Yoon, Yong-Jin
초록이 없습니다.
Advanced Materials WS Choi 20 23 4504 2008 10.1002/adma.200801423 Choi, W. S., Koo, H. Y., Kim, J. Y., & Huck, W. T. S. (2008). Collective behavior of magnetic nanoparticles in polyelectrolyte brushes. Advanced Materials, 20(23), 4504-4508. https://doi.org/10.1002/adma.200801423.
Chemistry of Materials S Gupta 22 2 504 2010 10.1021/cm9031336 Gupta, S., Agrawal, M., Uhlmann, P., Simon, F., & Stamm, M. (2010). Poly(N-isopropyl acrylamide)−gold nanoassemblies on macroscopic surfaces: Fabrication, characterization, and application. Chemistry of Materials, 22(2), 504-509. https://doi.org/10.1021/cm9031336.
Nano Letters HJ Snaith 5 9 1653 2005 10.1021/nl0505039 Snaith, H. J., Whiting, G. L., Sun, B., Greenham, N. C., Huck, W. T. S., & Friend, R. H. (2005). Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes. Nano Letters, 5(9), 1653-1657. https://doi.org/10.1021/nl0505039.
Journal of the American Chemical Society I Tokareva 126 49 15950 2004 10.1021/ja044575y Tokareva, I., Minko, S., Fendler, J. H., & Hutter, E. (2004). Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. Journal of the American Chemical Society, 126(49), 15950-15951. https://doi.org/10.1021/ja044575y.
Journal of Materials Chemistry O Azzaroni 17 32 3433 2007 10.1039/B704849A Azzaroni, O., Brown, A. A., Cheng, N., Wei, A., Jonas, A. M., & Huck, W. T. S. (2007). Synthesis of gold nanoparticles inside polyelectrolyte brushes. Journal of Materials Chemistry, 17(32), 3433-3439. https://doi.org/10.1039/B704849A.
Advanced Functional Materials S Gupta 20 11 1756 2010 10.1002/adfm.201000025 Gupta, S., Agrawal, M., Conrad, M., Hutter, N. A., Olk, P., Simon, F., et al. (2010). Poly(2-(dimethylamino)ethyl methacrylate) brushes with incorporated nanoparticles as a SERS active sensing layer. Advanced Functional Materials, 20(11), 1756-1761. https://doi.org/10.1002/adfm.201000025.
Macromolecules JU Kim 41 1 246 2008 10.1021/ma071906t Kim, J. U., & Matsen, M. W. (2008). Repulsion exerted on a spherical particle by a polymer brush. Macromolecules, 41(1), 246-252. https://doi.org/10.1021/ma071906t.
Macromolecules JU Kim 39 1 413 2006 10.1021/ma050817i Kim, J. U., & O'Shaughnessy, B. (2006). Nanoinclusions in dry polymer brushes. Macromolecules, 39(1), 413-425. https://doi.org/10.1021/ma050817i.
Journal of Polymer Engineering A Mishra 31 253 2011 10.1515/polyeng.2011.051 Mishra, A., & Maiti, P. (2011). Aromatic polyurethanes: The effect of hard segment and chain structure on their properties. Journal of Polymer Engineering, 31, 253.
Journal of Applied Polymer Science A Mishra 120 6 3546 2011 10.1002/app.33525 Mishra, A., & Maiti, P. (2011). Morphology of polyurethanes at various length scale: The influence of chain structure. Journal of Applied Polymer Science, 120(6), 3546-3555. https://doi.org/10.1002/app.33525.
Langmuir MG Opferman 29 27 8584 2013 10.1021/la4013922 Opferman, M. G., Coalson, R. D., Jasnow, D., & Zilman, A. (2013). Morphology of polymer brushes infiltrated by attractive nanoinclusions of various sizes. Langmuir, 29(27), 8584-8591. https://doi.org/10.1021/la4013922.
The Journal of Chemical Physics SA Egorov 137 13 134905 2012 10.1063/1.4757017 Egorov, S. A. (2012). Insertion of nanoparticles into polymer brush under variable solvent conditions. The Journal of Chemical Physics, 137(13), 134905. https://doi.org/10.1063/1.4757017.
ACS Nano S Diamanti 3 4 807 2009 10.1021/nn800822c Diamanti, S., Arifuzzaman, S., Genzer, J., & Vaia, R. A. (2009). Tuning gold nanoparticle−poly(2-hydroxyethyl methacrylate) brush interactions: From reversible swelling to capture and release. ACS Nano, 3(4), 807-818. https://doi.org/10.1021/nn800822c.
Advanced Materials H Ma 16 4 338 2004 10.1002/adma.200305830 Ma, H., Hyun, J., Stiller, P., & Chilkoti, A. (2004). “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Advanced Materials, 16(4), 338-341. https://doi.org/10.1002/adma.200305830.
Journal of the American Chemical Society R Oren 131 5 1670 2009 10.1021/ja8090092 Oren, R., Liang, Z., Barnard, J. S., Warren, S. C., Wiesner, U., & Huck, W. T. S. (2009). Organization of nanoparticles in polymer brushes. Journal of the American Chemical Society, 131(5), 1670-1671. https://doi.org/10.1021/ja8090092.
Progress in Polymer Science T Chen 35 1 94 2010 10.1016/j.progpolymsci.2009.11.004 Chen, T., Ferris, R., Zhang, J., Ducker, R., & Zauscher, S. (2010). Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Progress in Polymer Science, 35(1), 94-112. https://doi.org/10.1016/j.progpolymsci.2009.11.004.
Advanced Materials A Hucknall 21 23 2441 2009 10.1002/adma.200900383 Hucknall, A., Rangarajan, S., & Chilkoti, A. (2009). In pursuit of zero: Polymer brushes that resist the adsorption of proteins. Advanced Materials, 21(23), 2441-2446. https://doi.org/10.1002/adma.200900383.
Nature Materials MAC Stuart 9 101 2010 10.1038/nmat2614 Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., et al. (2010). Emerging applications of stimuli-responsive polymer materials [Review Article]. Nature Materials, 9, 101. https://doi.org/10.1038/nmat2614.
ACS Applied Materials and Interfaces LH Hess 6 12 9705 2014 10.1021/am502112x Hess, L. H., Lyuleeva, A., Blaschke, B. M., Sachsenhauser, M., Seifert, M., Garrido, J. A., et al. (2014). Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Applied Materials and Interfaces, 6(12), 9705-9710. https://doi.org/10.1021/am502112x.
Chemical Reviews M Krishnamoorthy 114 21 10976 2014 10.1021/cr500252u Krishnamoorthy, M., Hakobyan, S., Ramstedt, M., & Gautrot, J. E. (2014). Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chemical Reviews, 114(21), 10976-11026. https://doi.org/10.1021/cr500252u.
Advanced Functional Materials X Ma 23 25 3239 2013 10.1002/adfm.201203181 Ma, X., Xie, Z., Liu, Z., Liu, X., Cao, T., & Zheng, Z. (2013). Polymer brush electrets. Advanced Functional Materials, 23(25), 3239-3246. https://doi.org/10.1002/adfm.201203181.
Talanta N Elahi 184 537 2018 10.1016/j.talanta.2018.02.088 Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537-556. https://doi.org/10.1016/j.talanta.2018.02.088.
Nanoscale Y-C Yeh 4 6 1871 2012 10.1039/C1NR11188D Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871-1880. https://doi.org/10.1039/C1NR11188D.
Journal of Materials Chemistry B EY Kim 3 43 8433 2015 10.1039/C5TB01292A Kim, E. Y., Kumar, D., Khang, G., & Lim, D.-K. (2015). Recent advances in gold nanoparticle-based bioengineering applications. Journal of Materials Chemistry B, 3(43), 8433-8444. https://doi.org/10.1039/C5TB01292A.
Chemical Communications BC Sih 27 3375 2005 10.1039/B501448D Sih, B. C., & Wolf, M. O. (2005). Metal nanoparticle-conjugated polymer nanocomposites. Chemical Communications, 27, 3375-3384. https://doi.org/10.1039/B501448D.
Science AC Balazs 314 5802 1107 2006 10.1126/science.1130557 Balazs, A. C., Emrick, T., & Russell, T. P. (2006). Nanoparticle polymer composites: Where two small worlds meet. Science, 314(5802), 1107. https://doi.org/10.1126/science.1130557.
Advanced Materials MR Bockstaller 17 11 1331 2005 10.1002/adma.200500167 Bockstaller, M. R., Mickiewicz, R. A., & Thomas, E. L. (2005). Block copolymer nanocomposites: Perspectives for tailored functional materials. Advanced Materials, 17(11), 1331-1349. https://doi.org/10.1002/adma.200500167.
Nano Today AR Ferhan 11 4 415 2016 10.1016/j.nantod.2016.07.001 Ferhan, A. R., & Kim, D.-H. (2016). Nanoparticle polymer composites on solid substrates for plasmonic sensing applications. Nano Today, 11(4), 415-434. https://doi.org/10.1016/j.nantod.2016.07.001.
Advanced Materials A Hucknall 21 19 1968 2009 10.1002/adma.200803125 Hucknall, A., Kim, D.-H., Rangarajan, S., Hill, R. T., Reichert, W. M., & Chilkoti, A. (2009). Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Advanced Materials, 21(19), 1968-1971. https://doi.org/10.1002/adma.200803125.
The Journal of Physical Chemistry B J Kimling 110 32 15700 2006 10.1021/jp061667w Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., & Plech, A. (2006). Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B, 110(32), 15700-15707. https://doi.org/10.1021/jp061667w.
Analytical Chemistry AR Ferhan 85 8 4094 2013 10.1021/ac4001817 Ferhan, A. R., Guo, L., Zhou, X., Chen, P., Hong, S., & Kim, D.-H. (2013). Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: Lead detection as a case study. Analytical Chemistry, 85(8), 4094-4099. https://doi.org/10.1021/ac4001817.
Journal of Materials Chemistry AR Ferhan 22 4 1274 2012 10.1039/C1JM15180K Ferhan, A. R., & Kim, D.-H. (2012). In-stacking: A strategy for 3D nanoparticle assembly in densely-grafted polymer brushes. Journal of Materials Chemistry, 22(4), 1274-1277. https://doi.org/10.1039/C1JM15180K.
Polymer AR Ferhan 75 57 2015 10.1016/j.polymer.2015.08.027 Ferhan, A. R., Zainol, N., & Kim, D.-H. (2015). A facile method towards rough morphology polymer brush for increased mobility of embedded nanoparticles. Polymer, 75, 57-63. https://doi.org/10.1016/j.polymer.2015.08.027.
ACS Macro Letters W Yan 8 7 865 2019 10.1021/acsmacrolett.9b00388 Yan, W., Fantin, M., Spencer, N. D., Matyjaszewski, K., & Benetti, E. M. (2019). Translating surface-initiated atom transfer radical polymerization into technology: The mechanism of CuO-mediated SI-ATRP under environmental conditions. ACS Macro Letters, 8(7), 865-870. https://doi.org/10.1021/acsmacrolett.9b00388.
Macromolecules K Matyjaszewski 45 10 4015 2012 10.1021/ma3001719 Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45(10), 4015-4039. https://doi.org/10.1021/ma3001719.
Sensors S Unser 15 7 2015 10.3390/s150715684 Unser, S., Bruzas, I., He, J., & Sagle, L. (2015). Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors, 15, 7. https://doi.org/10.3390/s150715684.
Chemical Reviews JR Mejía-Salazar 118 20 10617 2018 10.1021/acs.chemrev.8b00359 Mejía-Salazar, J. R., & Oliveira, O. N. (2018). Plasmonic biosensing. Chemical Reviews, 118(20), 10617-10625. https://doi.org/10.1021/acs.chemrev.8b00359.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.