최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Applied composite materials, v.28 no.2, 2021년, pp.529 - 557
Lee, Sanghoon , John, Jerin , Park, Gisu , Kim, Jae Gang
초록이 없습니다.
Carbon E Fitzer 25 163 1987 10.1016/0008-6223(87)90116-3 Fitzer, E.: The future of carbon-carbon composites. Carbon 25, 163-190 (1987). https://doi.org/10.1016/0008-6223(87)90116-3
Laub, B., Venkatapathy, E.: Thermal protection system technology and facility needs for demanding future planetary missions. Proceedings of the international work shop planetary probe atmospheric entry and descent trajectory analysis and science (2004)
AIAA J. JJ McNamara 49 1089 2011 10.2514/1.J050882 McNamara, J.J., Friedmann, P.P.: Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future. AIAA J. 49, 1089-1122 (2011). https://doi.org/10.2514/1.J050882
Acta astronaut. J Guo 166 209 2020 10.1016/j.actaastro.2019.10.032 Guo, J., Huang, H., Xu, X.: Protective effect of pyrolysis gases combustion against surface ablation under different Mach numbers. Acta astronaut. 166, 209-217 (2020). https://doi.org/10.1016/j.actaastro.2019.10.032
Acta astronaut. J Huang 146 368 2018 10.1016/j.actaastro.2018.02.047 Huang, J., Li, P., Yao, W.: Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method. Acta astronaut. 146, 368-377 (2018). https://doi.org/10.1016/j.actaastro.2018.02.047
Acta astronaut. J Hao 126 1 2016 10.1016/j.actaastro.2016.04.014 Hao, J., Wang, J., Lee, C.: Numerical study of hypersonic flows over re-entry configurations with different chemical nonequilibrium models. Acta astronaut. 126, 1-10 (2016). https://doi.org/10.1016/j.actaastro.2016.04.014
Acta astronaut. MG Persova 136 312 2017 10.1016/j.actaastro.2017.02.021 Persova, M.G., Soloveichik, Y.G., Belov, V.K., Kiselev, D.S., Vagin, D.V., Domnikov, P.A., Patrushev, I.I., Kurskiy, D.N.: Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles. Acta astronaut. 136, 312-331 (2017). https://doi.org/10.1016/j.actaastro.2017.02.021
J. Spacecr. Rockets RM Wakefield 10 149 1973 10.2514/3.61861 Wakefield, R.M., Peterson, D.L.: Graphite ablation in combined convective and radiative heating. J. Spacecr. Rockets 10, 149-154 (1973). https://doi.org/10.2514/3.61861
Carbon J Yin 44 1690 2006 10.1016/j.carbon.2006.01.017 Yin, J., Xiong, X., Zhang, H., Huang, B.: Microstructure and ablation performances of dual-matrix carbon/carbon composites. Carbon 44, 1690-1694 (2006). https://doi.org/10.1016/j.carbon.2006.01.017
Carbon W Sun 47 3368 2009 10.1016/j.carbon.2009.07.047 Sun, W., Xiong, X., Huang, B., Li, G., Zhang, H., Chen, Z., Zhang, X.: ZrC ablation protective coating for carbon/carbon composites. Carbon 47, 3368-3371 (2009). https://doi.org/10.1016/j.carbon.2009.07.047
Carbon B Chen 47 1474 2009 10.1016/j.carbon.2009.01.040 Chen, B., Zhang, L., Cheng, L., Luan, X.: Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes. Carbon 47, 1474-1479 (2009). https://doi.org/10.1016/j.carbon.2009.01.040
New Carbon Mater. S Farhan 25 161 2010 10.1016/S1872-5805(09)60023-8 Farhan, S., Li, K., Guo, L., Gao, Q., Lan, F.: Effect of density and fibre orientation on the ablation behaviour of carbon-carbon composites. New Carbon Mater. 25, 161-167 (2010). https://doi.org/10.1016/S1872-5805(09)60023-8
J. Aerosp. Technol. Manag. G Petraconi 2 33 2010 10.5028/jatm.2010.02013340 Petraconi, G., Essiptchouk, A.M., Charakhovski, L.I., Otani, C., Maciel, H.S., Pessoa, R.S., Gregori, M.L., Costa, S.F.: Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet. J. Aerosp. Technol. Manag. 2, 33-40 (2010). https://doi.org/10.5028/jatm.2010.02013340
Trans. JSASS Aerosp. Tech. Japan M Funatsu 8 41 2010 10.2322/tastj.8.Pe_41 Funatsu, M., Ozawa, M., Shirai, H., Takakusagi, F.: Experimental study of ablation processes of SiC-based materials in air plasma freejets. Trans. JSASS Aerosp. Tech. Japan 8, 41-46 (2010). https://doi.org/10.2322/tastj.8.Pe_41
Carbon X Shen 48 344 2010 10.1016/j.carbon.2009.09.035 Shen, X., Li, K., Li, H., Du, H., Cao, W., Lan, F.: Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites. Carbon 48, 344-351 (2010). https://doi.org/10.1016/j.carbon.2009.09.035
Corros. Sci. X Shen 53 105 2011 10.1016/j.corsci.2010.09.028 Shen, X., Li, K., Li, H., Fu, Q., Li, S., Deng, F.: The effect of zirconium carbide on ablation of carbon/carbon composites under an oxy-acetylene flame. Corros. Sci. 53, 105-112 (2011). https://doi.org/10.1016/j.corsci.2010.09.028
10.1016/j.solidstatesciences.2011.09.010 Yin, J., Zhang, H., Xiong, X., Zuo, J., Tao, H.: Ablation properties of C/C-SiC composites tested on an arc heater. Solid State Sci. 13, 2055-2059 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.09.010
Corros. Sci. W Zaman 61 134 2012 10.1016/j.corsci.2012.04.036 Zaman, W., Li, K., Ikram, S., Li, W., Zhang, D., Guo, L.: Morphology, thermal response and anti-ablation performance of 3D-four directional pitch-based carbon/carbon composites. Corros. Sci. 61, 134-142 (2012). https://doi.org/10.1016/j.corsci.2012.04.036
Corros. Sci. L Liu 74 159 2013 10.1016/j.corsci.2013.04.038 Liu, L., Li, H., Feng, W., Shi, X., Li, K., Guo, L.: Ablation in different heat fluxes of C/C composites modified by ZrB2-ZrC and ZrB2-ZrC-SiC particles. Corros. Sci. 74, 159-167 (2013). https://doi.org/10.1016/j.corsci.2013.04.038
Mater. Sci. Eng. A S Kumar 566 102 2013 10.1016/j.msea.2012.12.059 Kumar, S., Kushwaha, J., Mondal, S., Kumar, A., Jain, R.K., Devi, G.R.: Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater. Sci. Eng. A 566, 102-111 (2013). https://doi.org/10.1016/j.msea.2012.12.059
J. Ceram. Int. J Xie 39 4171 2013 10.1016/j.ceramint.2012.10.273 Xie, J., Li, K., Li, H., Fu, Q., Guo, L.: Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxy-acetylene torch at 3000 ℃. J. Ceram. Int. 39, 4171-4178 (2013). https://doi.org/10.1016/j.ceramint.2012.10.273
Scala, S.M.: The ablation of graphite in dissociated air - 1. Theory. General Electric R62SD72 (1962)
Ind. Eng. Chem. Res. CV Kumar 58 22663 2019 10.1021/acs.iecr.9b04625 Kumar, C.V., Kandasubramanian, B.: Advances in ablative composites of carbon based materials: A review. Ind. Eng. Chem. Res. 58, 22663-22701 (2019). https://doi.org/10.1021/acs.iecr.9b04625
AIAA J. JW Metzger 5 451 1967 10.2514/3.4001 Metzger, J.W., Engel, M.J., Diaconis, N.S.: Oxidation and sublimation of graphite in simulated re-entry environments. AIAA J. 5, 451-460 (1967). https://doi.org/10.2514/3.4001
Compos. Sci. Technol. GL Vignoles 69 1470 2009 10.1016/j.compscitech.2008.09.019 Vignoles, G.L., Lachaud, J., Aspa, Y., Goyhénèche, J.M.: Ablation of carbon-based materials: Multiscale roughness modelling. Compos. Sci. Technol. 69, 1470-1477 (2009). https://doi.org/10.1016/j.compscitech.2008.09.019
AIAA J. DC Reda 19 329 1981 10.2514/3.50952 Reda, D.C.: Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments. AIAA J. 19, 329-339 (1981). https://doi.org/10.2514/3.50952
J. Spacecr. Rockets K Suzuki 35 407 1998 10.2514/2.3344 Suzuki, K., Kubota, H., Fujita, K., Abe, T.: Chemical nonequilibrium stagnation ablation analysis of MUSES-C superorbital re-entry capsule. J. Spacecr. Rockets 35, 407-409 (1998). https://doi.org/10.2514/2.3344
J. Thermophys. Heat Trans. RN Gupta 11 562 1997 10.2514/2.6280 Gupta, R.N., Moss, J.N., Price, J.M.: Assessment of thermochemical nonequilibrium and slip effects for orbital re-entry experiment. J. Thermophys. Heat Trans. 11, 562-569 (1997). https://doi.org/10.2514/2.6280
Kendall, R.M., Rindal, R.A., Bartlett, E.P.: Thermochemical ablation. AIAA thermophysics specialist conference (1965)
J. Ceram. Int. S Farhan 41 13751 2015 10.1016/j.ceramint.2015.08.043 Farhan, S., Wang, R., Li, Z., Wang, C.: Sublimation and oxidation zone ablation behavior of carbon/carbon composites. J. Ceram. Int. 41, 13751-13758 (2015). https://doi.org/10.1016/j.ceramint.2015.08.043
10.1002/adem.201700239 Jin, X., Fan, X., Jiang, P., Wang, Q.: Microstructure evolution and ablation mechanism of C/C and C/C-SiC composites under a hypersonic flowing propane torch. Adv. Eng. Mater. 19 (2017). https://doi.org/10.1002/adem.201700239
J. Mater. Res. Technol. Y Wang 5 170 2016 10.1016/j.jmrt.2015.10.004 Wang, Y., Chen, Z., Yu, S.: Ablation behavior and mechanism analysis of C/SiC composites. J. Mater. Res. Technol. 5, 170-182 (2016). https://doi.org/10.1016/j.jmrt.2015.10.004
Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions and applications - I. Analysis. NASA Reference Publication 1311 (1994)
J. Spacecr. Rockets YK Chen 36 475 1999 10.2514/2.3469 Chen, Y.K., Milos, F.S.: Ablation and thermal response program for spacecraft heatshield analysis. J. Spacecr. Rockets 36, 475-483 (1999). https://doi.org/10.2514/2.3469
Appl. Compos. Mater. B Zhang 25 191 2018 10.1007/s10443-017-9629-1 Zhang, B., Li, X.: Thermal response of a 4D carbon/carbon composite with volume ablation: a numerical study. Appl. Compos. Mater. 25, 191-202 (2018a). https://doi.org/10.1007/s10443-017-9629-1
Appl. Compos. Mater. B Zhang 25 675 2018 10.1007/s10443-017-9645-1 Zhang, B., Li, X.: Numerical simulation of thermal response and ablation behavior of a hybrid carbon/carbon composite. Appl. Compos. Mater. 25, 675-688 (2018b). https://doi.org/10.1007/s10443-017-9645-1
Taylor, R.E.: Specific heat of carbon/carbon composites. AFOSR-TR-81-0716 (1980)
Miller, I.M., Sutton, K.: An experimental study of the oxidation of graphite in high-temperature supersonic and hypersonic environments. NASA Technical Note D-3444 (1966)
Dow, M.B., Swann, R.T.: Determination of effects of oxidation on performance of charring ablators. NASA Technical Note R-196 (1976)
Int. J. Aeronaut. Space Sci. S Lee 20 620 2019 10.1007/s42405-019-00185-2 Lee, S., Kim, J.G., Paik, J.G., Park, G.: Evaluation system for ablative material in a high-temperature torch. Int. J. Aeronaut. Space Sci. 20, 620-635 (2019). https://doi.org/10.1007/s42405-019-00185-2
J. Spacecr. Rockets PJ Schneider 10 592 1973 10.2514/3.61931 Schneider, P.J., Teter, R.D., Coleman, W.D., Heath, R.M.: Design of graphite nosetips for ballistic re-entry. J. Spacecr. Rockets 10, 592-598 (1973). https://doi.org/10.2514/3.61931
Exp. Therm. Fluid Sci. SCC Bailey 93 319 2018 10.1016/j.expthermflusci.2018.01.005 Bailey, S.C.C., Bauer, D., Panerai, F., Splinter, S.C., Danehy, P.M., Hardy, J.M., Martin, A.: Experimental analysis of spallation particle trajectories in an arc-jet environment. Exp. Therm. Fluid Sci. 93, 319-325 (2018). https://doi.org/10.1016/j.expthermflusci.2018.01.005
AIAA J. C Park 14 1640 1976 10.2514/3.7267 Park, C.: Effects of atomic oxygen on graphite ablation. AIAA J. 14, 1640-1642 (1976). https://doi.org/10.2514/3.7267
Fusion Eng. Des. TD Marshall 69 663 2003 10.1016/S0920-3796(03)00204-7 Marshall, T.D., Pawelko, R.J., Anderl, R.A., Smolik, G.R., Merrill, B.J., Moore, R.L., Petti, D.A.: Oxygen reactivity of a carbon fiber composite. Fusion Eng. Des. 69, 663-667 (2003). https://doi.org/10.1016/S0920-3796(03)00204-7
Carbon J Lachaud 45 2768 2007 10.1016/j.carbon.2007.09.034 Lachaud, J., Bertrand, N., Vignoles, G.L., Bourget, G., Rebillat, F., Weisbecker, P.: A theoretical/experimental approach to the intrinsic oxidation reactivities of C/C composites and of their components. Carbon 45, 2768-2776 (2007). https://doi.org/10.1016/j.carbon.2007.09.034
Prog. Aerosp. Sci. JJ Bertin 39 511 2003 10.1016/S0376-0421(03)00079-4 Bertin, J.J., Cummings, R.M.: Fifty years of hypersonics: where we’ve been, where we’re going. Prog. Aerosp. Sci. 39, 511-536 (2003). https://doi.org/10.1016/S0376-0421(03)00079-4
Carbon H Weisshaus 28 125 1990 10.1016/0008-6223(90)90103-6 Weisshaus, H., Kenig, S., Kastner, E., Siegmann, A.: Morphology development during processing of carbon-carbon composites. Carbon 28, 125-135 (1990). https://doi.org/10.1016/0008-6223(90)90103-6
Appl. Surf. Sci. J Zhang 355 638 2015 10.1016/j.apsusc.2015.07.161 Zhang, J., Fu, Q., Qu, J., Li, H.: Pre-ablation treatment of carbon/carbon composites to improve the thermal shock resistance for SiC coating under oxy-acetylene torch. Appl. Surf. Sci. 355, 638-643 (2015). https://doi.org/10.1016/j.apsusc.2015.07.161
Appl. Compos. Mater. J Yin 19 237 2012 10.1007/s10443-011-9192-0 Yin, J., Zhang, H., Xiong, X., Zuo, J., Huang, B.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237-245 (2012). https://doi.org/10.1007/s10443-011-9192-0
Int. J. Heat Mass Transf. J Lachaud 51 2614 2008 10.1016/j.ijheatmasstransfer.2008.01.008 Lachaud, J., Aspa, Y., Vignoles, G.L.: Analytical modeling of the steady state ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 51, 2614-2627 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.008
J. Chem. Phys. CR Wilke 18 517 1950 10.1063/1.1747673 Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517-519 (1950). https://doi.org/10.1063/1.1747673
RB Bird 1960 Transport Phenomena Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley and Sons, New York (1960)
Mol. Phys. S Mathur 12 569 1967 10.1080/00268976700100731 Mathur, S., Tondon, P.K., Saxena, S.C.: Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Mol. Phys. 12, 569-579 (1967). https://doi.org/10.1080/00268976700100731
JO Hirschfelder 1954 Molecular Theory of Gases and Liquids Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. John Wiley and Sons, New York (1954)
CHEMKIN collection Release RJ Kee 3 6 2000 Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Galrborg, P., Wang, C., Adigun, O.: CHEMKIN collection Release 3, 6 (2000)
J. Chem. Phys. L Monchick 35 1676 1961 10.1063/1.1732130 Monchick, L., Mason, E.A.: Transport properties of polar gases. J. Chem. Phys. 35, 1676-1697 (1961). https://doi.org/10.1063/1.1732130
Comput. Mater. Sci. T Yin 95 35 2014 10.1016/j.commatsci.2014.07.013 Yin, T., Zhang, Z., Li, X., Feng, X., Feng, Z., Wang, Y., He, L., Gong, X.: Modeling ablative behavior and thermal response of carbon/carbon composites. Comput. Mater. Sci. 95, 35-40 (2014). https://doi.org/10.1016/j.commatsci.2014.07.013
Int. J. Heat Mass Transf. J Lachaud 115 1150 2017 10.1016/j.ijheatmasstransfer.2017.06.130 Lachaud, J., Aspa, Y., Vignoles, G.L.: Analytical modeling of the transient ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 115, 1150-1165 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.130
Combust. Flame K Matsui 25 57 1975 10.1016/0010-2180(75)90068-1 Matsui, K., Koyama, A., Uehara, K.: Fluid-mechanical effects on the combustion rate of solid carbon. Combust. Flame 25, 57-66 (1975). https://doi.org/10.1016/0010-2180(75)90068-1
AIAA J. JG Marvin 5 240 1967 10.2514/3.3948 Marvin, J.G., Pope, R.B.: Laminar convective heating and ablation in the Mars atmosphere. AIAA J. 5, 240-248 (1967). https://doi.org/10.2514/3.3948
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.