$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Tailoring grain sizes of the biodegradable iron-based alloys by pre-additive manufacturing microalloying 원문보기

Scientific reports, v.11 no.1, 2021년, pp.9610 -   

Huang, Chih-Chieh (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) ,  Lam, Tu-Ngoc (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) ,  Amalia, Lia (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) ,  Chen, Kuan-Hung (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) ,  Yang, Kuo-Yi (Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310 Taiwan) ,  Muslih, M. Rifai (Neutron Scattering Lab. PSTBM-BATAN, Kawasan PUSPIPTEK Serpong, 15314 Indonesia) ,  Singh, Sudhanshu Shekhar (Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016 India) ,  Tsai, Pei-I. (Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310 Taiwan) ,  Lee, Yuan-Tzu (Department of Materials Science and Engineering, National Taiwan University, Taipei, 10607 Taiwan) ,  Jain, Jayant (Depa) ,  Lee, Soo Yeol ,  Lai, Hong-Jen ,  Huang, Wei-Chin ,  Chen, San-Yuan ,  Huang, E-Wen

Abstract AI-Helper 아이콘AI-Helper

We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two s...

참고문헌 (79)

  1. 1. Costello, K. & Rimol M. Gartner Identifies Five Emerging Trends That Will Drive Technology Innovation for the Next Decade . 2020: STAMFORD, Conn. p. https://www.gartner.com/en/newsroom/press-releases/2020-08-18-gartner-identifies-five-emerging-trends-that-will-drive-technology-innovation-for-the-next-decade . 

  2. 2. Middleton JC Tipton AJ Synthetic biodegradable polymers as orthopedic devices Biomaterials 2000 21 23 2335 2346 10.1016/S0142-9612(00)00101-0 11055281 

  3. 3. Gilding DK Reed AM Biodegradable polymers for use in surgery―polyglycolic/poly(actic acid) homo- and copolymers: 1 Polymer 1979 20 12 1459 1464 10.1016/0032-3861(79)90009-0 

  4. 4. Cha P-R Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases Sci. Rep. 2013 3 1 2367 10.1038/srep02367 23917705 

  5. 5. Yang H Alloying design of biodegradable zinc as promising bone implants for load-bearing applications Nat. Commun. 2020 11 1 401 10.1038/s41467-019-14153-7 31964879 

  6. 6. Kannan MB Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications Sci. Rep. 2017 7 1 15605 10.1038/s41598-017-15873-w 29142320 

  7. 7. Yusop AHM Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants Sci. Rep. 2015 5 1 11194 10.1038/srep11194 26057073 

  8. 8. Huang T Zheng Y Uniform and accelerated degradation of pure iron patterned by Pt disc arrays Sci. Rep. 2016 6 1 23627 10.1038/srep23627 27033380 

  9. 9. Witte F Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response J. Biomed. Mater. Res. Part A 2007 81 3 748 756 10.1002/jbm.a.31170 

  10. 10. Sezer N Review of magnesium-based biomaterials and their applications J. Magn. Alloys 2018 6 1 23 43 10.1016/j.jma.2018.02.003 

  11. 11. Peuster M Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta Biomaterials 2006 27 28 4955 4962 10.1016/j.biomaterials.2006.05.029 16765434 

  12. 12. Wegener B Development of a novel biodegradable porous iron-based implant for bone replacement Sci. Rep. 2020 10 1 9141 10.1038/s41598-020-66289-y 32499489 

  13. 13. Colombo A Karvouni E Biodegradable stents : "fulfilling the mission and stepping away" Circulation 2000 102 4 371 373 10.1161/01.CIR.102.4.371 10908206 

  14. 14. Chandra G Pandey A Biodegradable bone implants in orthopedic applications: a review Biocybern. Biomed. Eng. 2020 40 2 596 610 10.1016/j.bbe.2020.02.003 

  15. 15. Peuster M A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal―results 6?18 months after implantation into New Zealand white rabbits Heart 2001 86 5 563 10.1136/heart.86.5.563 11602554 

  16. 16. Carluccio D Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications Metall. Mater. Trans. A 2020 51 7 3311 3334 10.1007/s11661-020-05796-z 

  17. 17. Obayi CS Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application Biomatter 2016 6 1 e959874 10.4161/21592527.2014.959874 25482336 

  18. 18. Huang EW Hardening steels by the generation of transient phase using additive manufacturing Intermetallics 2019 109 60 67 10.1016/j.intermet.2019.03.004 

  19. 19. Tseng JC Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures: insitu measurements and underlying mechanisms Addit. Manuf. 2020 35 101322 32835025 

  20. 20. Chae H Unravelling thermal history during additive manufacturing of martensitic stainless steel J. Alloys Compd. 2021 857 157555 10.1016/j.jallcom.2020.157555 33071463 

  21. 21. Tsai P-I Multi-scale mapping for collagen-regulated mineralization in bone remodeling of additive manufacturing porous implants Mater. Chem. Phys. 2019 230 83 92 10.1016/j.matchemphys.2019.03.047 

  22. 22. Manakari V Parande G Gupta M Selective laser melting of magnesium and magnesium alloy powders: a review Metals 2017 7 1 2 10.3390/met7010002 

  23. 23. Zhang LC Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications Mater. Technol. 2016 31 2 66 76 10.1179/1753555715Y.0000000076 

  24. 24. Song B Microstructure and tensile properties of iron parts fabricated by selective laser melting Opt. Laser Technol. 2014 56 451 460 10.1016/j.optlastec.2013.09.017 

  25. 25. Carluccio D Comparative study of pure iron manufactured by selective laser melting, laser metal deposition, and casting processes Adv. Eng. Mater. 2019 21 7 1900049 10.1002/adem.201900049 

  26. 26. Calcagnotto M Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2010 527 10?11 2738 2746 10.1016/j.msea.2010.01.004 

  27. 27. Peng-Heng C Preban AG The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel Acta Metall. 1985 33 5 897 903 10.1016/0001-6160(85)90114-2 

  28. 28. Jiang Z Guan Z Lian J Effects of microstructural variables on the deformation behaviour of dual-phase steel Mater. Sci. Eng. A 1995 190 1 55 64 10.1016/0921-5093(94)09594-M 

  29. 29. Lenka S Effect of recalescence on microstructure and phase transformation in high carbon steel Mater. Sci. Technol. 2013 29 6 715 725 10.1179/1743284713Y.0000000205 

  30. 30. Yokota T Mateo CG Bhadeshia HKDH Formation of nanostructured steels by phase transformation Scr. Mater. 2004 51 8 767 770 10.1016/j.scriptamat.2004.06.006 

  31. 31. Bajaj P Steels in additive manufacturing: a review of their microstructure and properties Mater. Sci. Eng. A 2020 772 138633 10.1016/j.msea.2019.138633 

  32. 32. Sigel A Sigel H Sigel RKO Interrelations between essential metal ions and human diseases Metal Ions Life Sci. 2013 13 415 450 10.1007/978-94-007-7500-8_13 

  33. 33. Redlich C Quadbeck P Thieme M Kiebackb B Molybdenum―a biodegradable implant material for structural applications? Acta Biomater. 2020 104 241 251 10.1016/j.actbio.2019.12.031 31926333 

  34. 34. Tan JH Wong WLE Dalgarno KW An overview of powder granulometry on feedstock and part performance in the selective laser melting process Addit. Manuf. 2017 18 228 255 

  35. 35. Abd-Elghany K Bourell DL Property evaluation of 304L stainless steel fabricated by selective laser melting Rapid Prototyp. J. 2012 18 5 420 428 10.1108/13552541211250418 

  36. 36. Touloukian YS Thermophysical Properties Research, Thermal Expansion: Metallic Elements and Alloys 1994 University Microfilms International 

  37. 37. Hull F Effect of composition on thermal expansion of alloys used in power generation J. Mater. Eng. 1987 9 1 81 92 10.1007/BF02833790 

  38. 38. Aslam I Thermodynamic and kinetic behavior of low-alloy steels: an atomic level study using an Fe?Mn?Si?C modified embedded atom method (MEAM) potential Materialia 2019 8 100473 10.1016/j.mtla.2019.100473 

  39. 39. Gray D. E. American Institute of Physics Handbook, (1972). 

  40. 40. Hudok D Properties and selection: irons, steels, and high-performance alloys Met. Handbook 1990 1 200 211 

  41. 41. Kozlovskii YM Stankus SV The linear thermal expansion coefficient of iron in the temperature range of 130?1180 K J. Phys. Conf. Ser. 2019 1382 012181 10.1088/1742-6596/1382/1/012181 

  42. 42. Liu YC Sommer F Mittemeijer EJ Calibration of the differential dilatometric measurement signal upon heating and cooling; thermal expansion of pure iron Thermochim. Acta 2004 413 1 215 225 10.1016/j.tca.2003.10.005 

  43. 43. Denand B Carbon content evolution in austenite during austenitization studied by in situ synchrotron X-ray diffraction of a hypoeutectoid steel Materialia 2020 10 100664 10.1016/j.mtla.2020.100664 

  44. 44. Armentani E Esposito R Sepe R The effect of thermal properties and weld efficiency on residual stresses in welding J. Achiev. Mater. Manuf. Eng. 2007 1 146 

  45. 45. Li C Residual stress in metal additive manufacturing Procedia CIRP 2018 71 348 353 10.1016/j.procir.2018.05.039 

  46. 46. Mercelis P Kruth JP Residual stresses in selective laser sintering and selective laser melting Rapid Prototyp. J. 2006 12 5 254 265 10.1108/13552540610707013 

  47. 47. Yakout M Elbestawi MA Veldhuis SC A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L Addit. Manuf. 2018 24 405 418 

  48. 48. Liu S Oxide scales characterization of micro-alloyed steel at high temperature J. Mater. Process. Technol. 2013 213 7 1068 1075 10.1016/j.jmatprotec.2013.01.022 

  49. 49. Chen RY Yuen WYD Short-time oxidation behavior of low-carbon, low-silicon steel in air at 850?1,180 °C??I: oxidation kinetics Oxid. Met. 2008 70 1?2 39 68 10.1007/s11085-008-9111-4 

  50. 50. Chen Y-T Biodegradation ZK50 magnesium alloy compression screws: mechanical properties, biodegradable characteristics and implant test J. Orthopaedic Sci. 2020 25 1107 1115 10.1016/j.jos.2020.01.018 

  51. 51. Li W In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg?Ca alloy and Mg?Sr alloy processed by high-pressure torsion Biomater. Sci. 2020 8 18 5071 5087 10.1039/D0BM00805B 32812545 

  52. 52. Sikora-Jasinska M Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications Mater. Sci. Eng. C 2017 81 511 521 10.1016/j.msec.2017.07.049 

  53. 53. Zumdick NA Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 Mater. Charact. 2019 147 384 397 10.1016/j.matchar.2018.11.011 

  54. 54. Hufenbach J Effect of selective laser melting on microstructure, mechanical, and corrosion properties of biodegradable FeMnCS for implant applications Adv. Eng. Mater. 2020 22 10 2000182 10.1002/adem.202000182 

  55. 55. Hermawan H Iron?manganese: new class of metallic degradable biomaterials prepared by powder metallurgy Powder Metall. 2008 51 1 38 45 10.1179/174329008X284868 

  56. 56. Yang Y A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying J. Mech. Behav. Biomed. Mater. 2018 82 51 60 10.1016/j.jmbbm.2018.03.018 29567530 

  57. 57. Deng Q Fabrication of high-strength Mg?Gd?Zn?Zr alloy via selective laser melting Mater. Charact. 2020 165 110377 10.1016/j.matchar.2020.110377 

  58. 58. Lejcek P Selective laser melting of pure iron: Multiscale characterization of hierarchical microstructure Mater. Charact. 2019 154 222 232 10.1016/j.matchar.2019.05.012 

  59. 59. Thijs L A study of the microstructural evolution during selective laser melting of Ti?6Al?4V Acta Mater. 2010 58 9 3303 3312 10.1016/j.actamat.2010.02.004 

  60. 60. Amato KN Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting Acta Mater. 2012 60 5 2229 2239 10.1016/j.actamat.2011.12.032 

  61. 61. Guan K Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel Mater. Des. 2013 50 581 586 10.1016/j.matdes.2013.03.056 

  62. 62. Thijs L Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder Acta Mater. 2013 61 5 1809 1819 10.1016/j.actamat.2012.11.052 

  63. 63. Song B Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts Surf. Coat. Technol. 2012 206 22 4704 4709 10.1016/j.surfcoat.2012.05.072 

  64. 64. Callister DW Jr Materials Science and Engineering an Introduction 2000 5 Wiley 

  65. 65. Harwood, J. Strengthening Mechanisms in Solids . in Metals Park: ASM Seminar . (1960). 

  66. 66. Chen C Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides Mater. Sci. Eng. A 2009 499 1?2 162 166 10.1016/j.msea.2007.11.110 

  67. 67. Baker R Brandon D Nutting J The growth of precipitates Phil. Mag. 1959 4 48 1339 1345 10.1080/14786435908233369 

  68. 68. Lee W-B Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo Metall. Mater. Trans. A. 2002 33 6 1689 10.1007/s11661-002-0178-2 

  69. 69. Rodrigues TA In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM) Addit. Manuf. 2020 34 101200 

  70. 70. Ganeev AV On the nature of high-strength state of carbon steel produced by severe plastic deformation IOP Conf. Ser. Mater. Sci. Eng. 2014 63 012128 10.1088/1757-899X/63/1/012128 

  71. 71. Krielaart GP Zwaag S Kinetics of γ → α phase transformation in Fe?Mn alloys containing low manganese Mater. Sci. Technol. 2013 14 1 10 18 10.1179/mst.1998.14.1.10 

  72. 72. Song B Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites Mater. Sci. Eng. A 2017 707 478 487 10.1016/j.msea.2017.09.092 

  73. 73. Kostryzhev A Comparative effect of Mo and Cr on microstructure and mechanical properties in NbV-microalloyed bainitic steels Metals 2018 8 2 134 10.3390/met8020134 

  74. 74. Misra RDK Ultrahigh strength hot rolled microalloyed steels: microstructural aspects of development Mater. Sci. Technol. 2013 17 9 1119 1129 10.1179/026708301101511040 

  75. 75. Sha W Development of structural steels with re resistant microstructures Mater. Sci. Technol. 2013 18 3 319 325 10.1179/026708301225000789 

  76. 76. International, A. ASTM E8/E8M-09 Standard Test Methods for Tension Testing of Metallic Materials . ASTM, (2011). 

  77. 77. Toby BH Von Dreele RB GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr. 2013 46 2 544 549 10.1107/S0021889813003531 

  78. 78. James JD A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures Meas. Sci. Technol. 2001 12 3 R1 R15 10.1088/0957-0233/12/3/201 

  79. 79. Huang EW Element effects on high-entropy alloy vacancy and heterogeneous lattice distortion subjected to quasi-equilibrium heating Sci. Rep. 2019 9 1 14788 10.1038/s41598-019-51297-4 31616021 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로