최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.11 no.1, 2021년, pp.9610 -
Huang, Chih-Chieh (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) , Lam, Tu-Ngoc (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) , Amalia, Lia (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) , Chen, Kuan-Hung (Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30013 Taiwan) , Yang, Kuo-Yi (Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310 Taiwan) , Muslih, M. Rifai (Neutron Scattering Lab. PSTBM-BATAN, Kawasan PUSPIPTEK Serpong, 15314 Indonesia) , Singh, Sudhanshu Shekhar (Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016 India) , Tsai, Pei-I. (Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310 Taiwan) , Lee, Yuan-Tzu (Department of Materials Science and Engineering, National Taiwan University, Taipei, 10607 Taiwan) , Jain, Jayant (Depa) , Lee, Soo Yeol , Lai, Hong-Jen , Huang, Wei-Chin , Chen, San-Yuan , Huang, E-Wen
We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two s...
1. Costello, K. & Rimol M. Gartner Identifies Five Emerging Trends That Will Drive Technology Innovation for the Next Decade . 2020: STAMFORD, Conn. p. https://www.gartner.com/en/newsroom/press-releases/2020-08-18-gartner-identifies-five-emerging-trends-that-will-drive-technology-innovation-for-the-next-decade .
2. Middleton JC Tipton AJ Synthetic biodegradable polymers as orthopedic devices Biomaterials 2000 21 23 2335 2346 10.1016/S0142-9612(00)00101-0 11055281
3. Gilding DK Reed AM Biodegradable polymers for use in surgery―polyglycolic/poly(actic acid) homo- and copolymers: 1 Polymer 1979 20 12 1459 1464 10.1016/0032-3861(79)90009-0
4. Cha P-R Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases Sci. Rep. 2013 3 1 2367 10.1038/srep02367 23917705
5. Yang H Alloying design of biodegradable zinc as promising bone implants for load-bearing applications Nat. Commun. 2020 11 1 401 10.1038/s41467-019-14153-7 31964879
6. Kannan MB Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications Sci. Rep. 2017 7 1 15605 10.1038/s41598-017-15873-w 29142320
7. Yusop AHM Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants Sci. Rep. 2015 5 1 11194 10.1038/srep11194 26057073
8. Huang T Zheng Y Uniform and accelerated degradation of pure iron patterned by Pt disc arrays Sci. Rep. 2016 6 1 23627 10.1038/srep23627 27033380
9. Witte F Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response J. Biomed. Mater. Res. Part A 2007 81 3 748 756 10.1002/jbm.a.31170
10. Sezer N Review of magnesium-based biomaterials and their applications J. Magn. Alloys 2018 6 1 23 43 10.1016/j.jma.2018.02.003
11. Peuster M Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta Biomaterials 2006 27 28 4955 4962 10.1016/j.biomaterials.2006.05.029 16765434
12. Wegener B Development of a novel biodegradable porous iron-based implant for bone replacement Sci. Rep. 2020 10 1 9141 10.1038/s41598-020-66289-y 32499489
13. Colombo A Karvouni E Biodegradable stents : "fulfilling the mission and stepping away" Circulation 2000 102 4 371 373 10.1161/01.CIR.102.4.371 10908206
14. Chandra G Pandey A Biodegradable bone implants in orthopedic applications: a review Biocybern. Biomed. Eng. 2020 40 2 596 610 10.1016/j.bbe.2020.02.003
15. Peuster M A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal―results 6?18 months after implantation into New Zealand white rabbits Heart 2001 86 5 563 10.1136/heart.86.5.563 11602554
16. Carluccio D Challenges and opportunities in the selective laser melting of biodegradable metals for load-bearing bone scaffold applications Metall. Mater. Trans. A 2020 51 7 3311 3334 10.1007/s11661-020-05796-z
17. Obayi CS Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application Biomatter 2016 6 1 e959874 10.4161/21592527.2014.959874 25482336
18. Huang EW Hardening steels by the generation of transient phase using additive manufacturing Intermetallics 2019 109 60 67 10.1016/j.intermet.2019.03.004
19. Tseng JC Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures: insitu measurements and underlying mechanisms Addit. Manuf. 2020 35 101322 32835025
20. Chae H Unravelling thermal history during additive manufacturing of martensitic stainless steel J. Alloys Compd. 2021 857 157555 10.1016/j.jallcom.2020.157555 33071463
21. Tsai P-I Multi-scale mapping for collagen-regulated mineralization in bone remodeling of additive manufacturing porous implants Mater. Chem. Phys. 2019 230 83 92 10.1016/j.matchemphys.2019.03.047
22. Manakari V Parande G Gupta M Selective laser melting of magnesium and magnesium alloy powders: a review Metals 2017 7 1 2 10.3390/met7010002
24. Song B Microstructure and tensile properties of iron parts fabricated by selective laser melting Opt. Laser Technol. 2014 56 451 460 10.1016/j.optlastec.2013.09.017
25. Carluccio D Comparative study of pure iron manufactured by selective laser melting, laser metal deposition, and casting processes Adv. Eng. Mater. 2019 21 7 1900049 10.1002/adem.201900049
26. Calcagnotto M Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2010 527 10?11 2738 2746 10.1016/j.msea.2010.01.004
27. Peng-Heng C Preban AG The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel Acta Metall. 1985 33 5 897 903 10.1016/0001-6160(85)90114-2
28. Jiang Z Guan Z Lian J Effects of microstructural variables on the deformation behaviour of dual-phase steel Mater. Sci. Eng. A 1995 190 1 55 64 10.1016/0921-5093(94)09594-M
29. Lenka S Effect of recalescence on microstructure and phase transformation in high carbon steel Mater. Sci. Technol. 2013 29 6 715 725 10.1179/1743284713Y.0000000205
30. Yokota T Mateo CG Bhadeshia HKDH Formation of nanostructured steels by phase transformation Scr. Mater. 2004 51 8 767 770 10.1016/j.scriptamat.2004.06.006
31. Bajaj P Steels in additive manufacturing: a review of their microstructure and properties Mater. Sci. Eng. A 2020 772 138633 10.1016/j.msea.2019.138633
32. Sigel A Sigel H Sigel RKO Interrelations between essential metal ions and human diseases Metal Ions Life Sci. 2013 13 415 450 10.1007/978-94-007-7500-8_13
33. Redlich C Quadbeck P Thieme M Kiebackb B Molybdenum―a biodegradable implant material for structural applications? Acta Biomater. 2020 104 241 251 10.1016/j.actbio.2019.12.031 31926333
34. Tan JH Wong WLE Dalgarno KW An overview of powder granulometry on feedstock and part performance in the selective laser melting process Addit. Manuf. 2017 18 228 255
35. Abd-Elghany K Bourell DL Property evaluation of 304L stainless steel fabricated by selective laser melting Rapid Prototyp. J. 2012 18 5 420 428 10.1108/13552541211250418
36. Touloukian YS Thermophysical Properties Research, Thermal Expansion: Metallic Elements and Alloys 1994 University Microfilms International
37. Hull F Effect of composition on thermal expansion of alloys used in power generation J. Mater. Eng. 1987 9 1 81 92 10.1007/BF02833790
38. Aslam I Thermodynamic and kinetic behavior of low-alloy steels: an atomic level study using an Fe?Mn?Si?C modified embedded atom method (MEAM) potential Materialia 2019 8 100473 10.1016/j.mtla.2019.100473
39. Gray D. E. American Institute of Physics Handbook, (1972).
40. Hudok D Properties and selection: irons, steels, and high-performance alloys Met. Handbook 1990 1 200 211
41. Kozlovskii YM Stankus SV The linear thermal expansion coefficient of iron in the temperature range of 130?1180 K J. Phys. Conf. Ser. 2019 1382 012181 10.1088/1742-6596/1382/1/012181
42. Liu YC Sommer F Mittemeijer EJ Calibration of the differential dilatometric measurement signal upon heating and cooling; thermal expansion of pure iron Thermochim. Acta 2004 413 1 215 225 10.1016/j.tca.2003.10.005
43. Denand B Carbon content evolution in austenite during austenitization studied by in situ synchrotron X-ray diffraction of a hypoeutectoid steel Materialia 2020 10 100664 10.1016/j.mtla.2020.100664
44. Armentani E Esposito R Sepe R The effect of thermal properties and weld efficiency on residual stresses in welding J. Achiev. Mater. Manuf. Eng. 2007 1 146
45. Li C Residual stress in metal additive manufacturing Procedia CIRP 2018 71 348 353 10.1016/j.procir.2018.05.039
46. Mercelis P Kruth JP Residual stresses in selective laser sintering and selective laser melting Rapid Prototyp. J. 2006 12 5 254 265 10.1108/13552540610707013
47. Yakout M Elbestawi MA Veldhuis SC A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L Addit. Manuf. 2018 24 405 418
48. Liu S Oxide scales characterization of micro-alloyed steel at high temperature J. Mater. Process. Technol. 2013 213 7 1068 1075 10.1016/j.jmatprotec.2013.01.022
49. Chen RY Yuen WYD Short-time oxidation behavior of low-carbon, low-silicon steel in air at 850?1,180 °C??I: oxidation kinetics Oxid. Met. 2008 70 1?2 39 68 10.1007/s11085-008-9111-4
50. Chen Y-T Biodegradation ZK50 magnesium alloy compression screws: mechanical properties, biodegradable characteristics and implant test J. Orthopaedic Sci. 2020 25 1107 1115 10.1016/j.jos.2020.01.018
51. Li W In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg?Ca alloy and Mg?Sr alloy processed by high-pressure torsion Biomater. Sci. 2020 8 18 5071 5087 10.1039/D0BM00805B 32812545
52. Sikora-Jasinska M Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications Mater. Sci. Eng. C 2017 81 511 521 10.1016/j.msec.2017.07.049
53. Zumdick NA Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43 Mater. Charact. 2019 147 384 397 10.1016/j.matchar.2018.11.011
54. Hufenbach J Effect of selective laser melting on microstructure, mechanical, and corrosion properties of biodegradable FeMnCS for implant applications Adv. Eng. Mater. 2020 22 10 2000182 10.1002/adem.202000182
55. Hermawan H Iron?manganese: new class of metallic degradable biomaterials prepared by powder metallurgy Powder Metall. 2008 51 1 38 45 10.1179/174329008X284868
56. Yang Y A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying J. Mech. Behav. Biomed. Mater. 2018 82 51 60 10.1016/j.jmbbm.2018.03.018 29567530
57. Deng Q Fabrication of high-strength Mg?Gd?Zn?Zr alloy via selective laser melting Mater. Charact. 2020 165 110377 10.1016/j.matchar.2020.110377
58. Lejcek P Selective laser melting of pure iron: Multiscale characterization of hierarchical microstructure Mater. Charact. 2019 154 222 232 10.1016/j.matchar.2019.05.012
59. Thijs L A study of the microstructural evolution during selective laser melting of Ti?6Al?4V Acta Mater. 2010 58 9 3303 3312 10.1016/j.actamat.2010.02.004
60. Amato KN Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting Acta Mater. 2012 60 5 2229 2239 10.1016/j.actamat.2011.12.032
61. Guan K Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel Mater. Des. 2013 50 581 586 10.1016/j.matdes.2013.03.056
62. Thijs L Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder Acta Mater. 2013 61 5 1809 1819 10.1016/j.actamat.2012.11.052
63. Song B Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts Surf. Coat. Technol. 2012 206 22 4704 4709 10.1016/j.surfcoat.2012.05.072
64. Callister DW Jr Materials Science and Engineering an Introduction 2000 5 Wiley
65. Harwood, J. Strengthening Mechanisms in Solids . in Metals Park: ASM Seminar . (1960).
66. Chen C Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides Mater. Sci. Eng. A 2009 499 1?2 162 166 10.1016/j.msea.2007.11.110
67. Baker R Brandon D Nutting J The growth of precipitates Phil. Mag. 1959 4 48 1339 1345 10.1080/14786435908233369
68. Lee W-B Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo Metall. Mater. Trans. A. 2002 33 6 1689 10.1007/s11661-002-0178-2
69. Rodrigues TA In-situ strengthening of a high strength low alloy steel during wire and arc additive manufacturing (WAAM) Addit. Manuf. 2020 34 101200
70. Ganeev AV On the nature of high-strength state of carbon steel produced by severe plastic deformation IOP Conf. Ser. Mater. Sci. Eng. 2014 63 012128 10.1088/1757-899X/63/1/012128
71. Krielaart GP Zwaag S Kinetics of γ → α phase transformation in Fe?Mn alloys containing low manganese Mater. Sci. Technol. 2013 14 1 10 18 10.1179/mst.1998.14.1.10
72. Song B Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites Mater. Sci. Eng. A 2017 707 478 487 10.1016/j.msea.2017.09.092
73. Kostryzhev A Comparative effect of Mo and Cr on microstructure and mechanical properties in NbV-microalloyed bainitic steels Metals 2018 8 2 134 10.3390/met8020134
74. Misra RDK Ultrahigh strength hot rolled microalloyed steels: microstructural aspects of development Mater. Sci. Technol. 2013 17 9 1119 1129 10.1179/026708301101511040
75. Sha W Development of structural steels with re resistant microstructures Mater. Sci. Technol. 2013 18 3 319 325 10.1179/026708301225000789
76. International, A. ASTM E8/E8M-09 Standard Test Methods for Tension Testing of Metallic Materials . ASTM, (2011).
77. Toby BH Von Dreele RB GSAS-II: the genesis of a modern open-source all purpose crystallography software package J. Appl. Crystallogr. 2013 46 2 544 549 10.1107/S0021889813003531
78. James JD A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures Meas. Sci. Technol. 2001 12 3 R1 R15 10.1088/0957-0233/12/3/201
79. Huang EW Element effects on high-entropy alloy vacancy and heterogeneous lattice distortion subjected to quasi-equilibrium heating Sci. Rep. 2019 9 1 14788 10.1038/s41598-019-51297-4 31616021
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.