$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Derivation of stationary distributions of biochemical reaction networks via structure transformation 원문보기

Communications biology, v.4 no.1, 2021년, pp.620 -   

Hong, Hyukpyo (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Kim, Jinsu (Department of Mathematics, University of California, Irvine, CA USA) ,  Ali Al-Radhawi, M. (Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA) ,  Sontag, Eduardo D. (Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA) ,  Kim, Jae Kyoung (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to d...

참고문헌 (60)

  1. 1. Hahl SK Kremling A A comparison of deterministic and stochastic modeling approaches for biochemical reaction systems: on fixed points, means, and modes Front. Genet. 2016 7 157 10.3389/fgene.2016.00157 27630669 

  2. 2. Kim JK Marioni JC Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data Genome Biol. 2013 14 R7 10.1186/gb-2013-14-1-r7 23360624 

  3. 3. Stegle O Teichmann SA Marioni JC Computational and analytical challenges in single-cell transcriptomics Nat. Rev. Genet. 2015 16 133 145 10.1038/nrg3833 25628217 

  4. 4. Schnoerr D Sanguinetti G Grima R Approximation and inference methods for stochastic biochemical kinetics—a tutorial review J. Phys. A: Math. Theor. 2017 50 093001 10.1088/1751-8121/aa54d9 

  5. 5. Yang J-M Integrating chemical and mechanical signals through dynamic coupling between cellular protrusions and pulsed erk activation Nat. Commun. 2018 9 4673 10.1038/s41467-018-07150-9 30405112 

  6. 6. Gadgil C Lee CH Othmer HG A stochastic analysis of first-order reaction networks Bull. Math. Biol. 2005 67 901–946 10.1016/j.bulm.2004.09.009 15998488 

  7. 7. Allen, L. An Introduction to Stochastic Processes with Applications to Biology (CRC Press, 2010). 

  8. 8. Kelly F Reversibility and Stochastic Networks 1979 New York Wiley 

  9. 9. Mairesse, J. & Nguyen, H.-T. Deficiency zero Petri nets and product form. In Franceschinis, G. & Wolf, K. (eds.) Applications and Theory of Petri Nets , 103-122 (Springer-Verlag, 2009). 

  10. 10. Angeli D de Leenheer P Sontag E A Petri net approach to the study of persistence in chemical reaction networks Math. Biosci. 2007 210 598 618 10.1016/j.mbs.2007.07.003 17869313 

  11. 11. Anderson DF Craciun G Kurtz TG Product-form stationary distributions for deficiency zero chemical reaction networks Bull. Math. Biol. 2010 72 1947 1970 10.1007/s11538-010-9517-4 20306147 

  12. 12. Horn F Jackson R General mass action kinetics Arch. Rat. Mech. Anal. 1972 47 81 116 10.1007/BF00251225 

  13. 13. Horn F Necessary and sufficient conditions for complex balancing in chemical kinetics Arch. Rat. Mech. Anal. 1972 49 172 186 10.1007/BF00255664 

  14. 14. Feinberg M Complex balancing in general kinetic systems Arch. Rat. Mech. Anal. 1972 49 187 194 10.1007/BF00255665 

  15. 15. Wu S Fu J Li H Petzold L Automatic identification of model reductions for discrete stochastic simulation J. Chem. Phys. 2012 137 034106 10.1063/1.4733563 22830682 

  16. 16. Ghaemi, R. & Del Vecchio, D. Stochastic analysis of retroactivity in transcriptional networks through singular perturbation. In 2012 American Control Conference (ACC) , 2731–2736 (2012). 

  17. 17. Mélykúti B Hespanha JP Khammash M Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks J. R. Soc. Interface 2014 11 20140054 10.1098/rsif.2014.0054 24920118 

  18. 18. Hepp B Gupta A Khammash M Adaptive hybrid simulations for multiscale stochastic reaction networks J. Chem. Phys. 2015 142 034118 10.1063/1.4905196 25612700 

  19. 19. Hwang HJ Velázquez JJL Bistable stochastic biochemical networks: highly specific systems with few chemicals J. Math. Chem 2013 51 1343 1375 10.1007/s10910-013-0150-y 

  20. 20. Ali Al-Radhawi M Del Vecchio D Sontag ED Multi-modality in gene regulatory networks with slow promoter kinetics PLoS Comput. Biol. 2019 15 1 27 10.1371/journal.pcbi.1006784 

  21. 21. Kim JK Sontag ED Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation PLoS Comput. Biol. 2017 13 1 24 

  22. 22. Kan X Lee CH Othmer HG A multi-time-scale analysis of chemical reaction networks: Ii. stochastic systems J. Math. Biol. 2016 73 1081 1129 10.1007/s00285-016-0980-x 26945582 

  23. 23. Anderson, D. F. & Nguyen, T. D. Prevalence of deficiency zero reaction networks in an erdos-renyi framework (2019). 1910.12723. 

  24. 24. Johnston MD Translated chemical reaction networks Bull. Math. Biol. 2014 76 1081 1116 10.1007/s11538-014-9947-5 24610094 

  25. 25. Johnston MD Burton E Computing weakly reversible deficiency zero network translations using elementary flux modes Bull. Math. Biol. 2019 81 1613 1644 10.1007/s11538-019-00579-z 30790189 

  26. 26. Anderson DF Cotter SL Product-form stationary distributions for deficiency zero networks with non-mass action kinetics Bull. Math. Biol. 2016 78 2390 2407 10.1007/s11538-016-0220-y 27796722 

  27. 27. Sontag ED Structure and stability of certain chemical networks and applications to the kinetic proofreading model of t-cell receptor signal transduction IEEE Trans. Autom. Control 2001 46 1028 1047 10.1109/9.935056 

  28. 28. Beenstock J Mooshayef N Engelberg D How do protein kinases take a selfie (autophosphorylate)? Trends Biochem. Sci. 2016 41 938–953 10.1016/j.tibs.2016.08.006 27594179 

  29. 29. Dodson CA Yeoh S Haq T Bayliss R A kinetic test characterizes kinase intramolecular and intermolecular autophosphorylation mechanisms Sci. Signal. 2013 6 ra54 ra54 10.1126/scisignal.2003910 23821772 

  30. 30. Oda K Matsuoka Y Funahashi A Kitano H A comprehensive pathway map of epidermal growth factor receptor signaling Mol. Syst. Biol. 2005 1 2005.0010 10.1038/msb4100014 16729045 

  31. 31. Wang J Wu J-W Wang Z-X Structural insights into the autoactivation mechanism of p21-activated protein kinase Structure 2011 19 1752–1761 22153498 

  32. 32. Dammann K Khare V Gasche C Tracing paks from gi inflammation to cancer Gut 2014 63 1173 1184 10.1136/gutjnl-2014-306768 24811999 

  33. 33. Parrini MC Lei M Harrison SC Mayer BJ Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by cdc42 and rac1 Mol. Cell 2002 9 73–83 10.1016/S1097-2765(01)00428-2 11804587 

  34. 34. Zaytsev AV Bistability of a coupled aurora b kinase-phosphatase system in cell division eLife 2016 5 e10644 10.7554/eLife.10644 26765564 

  35. 35. Doherty K Meere M Piiroinen PT Some mathematical models of intermolecular autophosphorylation J. Theor. Biol. 2015 370 27–38 10.1016/j.jtbi.2015.01.015 25636493 

  36. 36. Wang Z-X Wu J-W Autophosphorylation kinetics of protein kinases Biochem. J. 2002 368 947 952 10.1042/bj20020557 12190618 

  37. 37. Mouri K Nacher JC Akutsu T A mathematical model for the detection mechanism of dna double-strand breaks depending on autophosphorylation of atm PLoS ONE 2009 4 1 14 10.1371/journal.pone.0005131 

  38. 38. Nguyen LK Kolch W Kholodenko BN When ubiquitination meets phosphorylation: a systems biology perspective of egfr/mapk signalling Cell Commun. Signal. 2013 11 52 10.1186/1478-811X-11-52 23902637 

  39. 39. Luciani F Keşmir C Mishto M Or-Guil M de Boer RJ A mathematical model of protein degradation by the proteasome Biophys. J. 2005 88 2422–2432 10.1529/biophysj.104.049221 15665121 

  40. 40. Tiganis T Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor IUBMB Life 2002 53 3 14 10.1080/15216540210811 12018405 

  41. 41. King CC p21-activated kinase (pak1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (pdk1) J. Biol. Chem. 2000 275 41201 41209 10.1074/jbc.M006553200 10995762 

  42. 42. Sessa F Villa F Structure of Aurora B–INCENP in complex with barasertib reveals a potential transinhibitory mechanism Acta Crystallogr. Sect. F 2014 70 294 298 10.1107/S2053230X14002118 

  43. 43. Chen C-Y Yu Z-Y Chuang Y-S Huang R-M Wang T-CV Sulforaphane attenuates egfr signaling in nsclc cells J. Biomed. Sci. 2015 22 38 10.1186/s12929-015-0139-x 26036303 

  44. 44. Gully CP Antineoplastic effects of an aurora b kinase inhibitor in breast cancer Mol. Cancer 2010 9 42 10.1186/1476-4598-9-42 20175926 

  45. 45. Weisz Hubsman M Volinsky N Manser E Yablonski D Aronheim A Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp Biochem. J. 2007 404 487 497 10.1042/BJ20061696 17355222 

  46. 46. Shamir M Bar-On Y Phillips R Milo R Snapshot: timescales in cell biology Cell 2016 164 1302–1302.e1 10.1016/j.cell.2016.02.058 26967295 

  47. 47. Bibbona E Kim J Wiuf C Stationary distributions of systems with discreteness-induced transitions J. R. Soc. Interface 2020 17 20200243 10.1098/rsif.2020.0243 

  48. 48. Rao CV Arkin AP Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm J. Chem. Phys. 2003 118 4999 5010 10.1063/1.1545446 

  49. 49. Waldherr S Estimation methods for heterogeneous cell population models in systems biology J. R. Soc. Interface 2018 15 20180530 10.1098/rsif.2018.0530 30381346 

  50. 50. Kremling, A. Systems biology: mathematical modeling and model analysis (CRC Press, 2013). 

  51. 51. Shinar G Feinberg M Structural sources of robustness in biochemical reaction networks Science 2010 327 1389 1391 10.1126/science.1183372 20223989 

  52. 52. Anderson DF Enciso GA Johnston MD Stochastic analysis of biochemical reaction networks with absolute concentration robustness J. R. Soc. Interface 2014 11 20130943 10.1098/rsif.2013.0943 24522780 

  53. 53. Enciso GA Transient absolute robustness in stochastic biochemical networks J. R. Soc. Interface 2016 13 20160475 10.1098/rsif.2016.0475 27581485 

  54. 54. Anderson DF Kim J Some network conditions for positive recurrence of stochastically modeled reaction networks SIAM J. Appl. Math. 2018 78 2692 2713 10.1137/17M1161427 

  55. 55. Johnston MD A computational approach to extinction events in chemical reaction networks with discrete state spaces Math. Biosci. 2017 294 130–142 10.1016/j.mbs.2017.10.003 29024749 

  56. 56. Johnston MD Anderson DF Craciun G Brijder R Conditions for extinction events in chemical reaction networks with discrete state spaces J. Math. Biol. 2018 76 1535 1558 10.1007/s00285-017-1182-x 28951955 

  57. 57. Feinberg, M. Foundations of Chemical Reaction Network Theory (Springer, 2019). 

  58. 58. Anderson, D. F. & Kurtz, T. G. Continuous time markov chain models for chemical reaction networks. In Design and analysis of biomolecular circuits , 3-42 (Springer, 2011). 

  59. 59. Sontag ED Zeilberger D A symbolic computation approach to a problem involving multivariate poisson distributions Adv. Appl. Math. 2010 44 359 377 10.1016/j.aam.2009.08.002 

  60. 60. Gillespie DT Exact stochastic simulation of coupled chemical reactions J. Phys. Chem. 1977 81 2340 2361 10.1021/j100540a008 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로