최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Communications biology, v.4 no.1, 2021년, pp.620 -
Hong, Hyukpyo (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Kim, Jinsu (Department of Mathematics, University of California, Irvine, CA USA) , Ali Al-Radhawi, M. (Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA) , Sontag, Eduardo D. (Department of Electrical and Computer Engineering, Northeastern University, Boston, MA USA) , Kim, Jae Kyoung (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea)
Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to d...
1. Hahl SK Kremling A A comparison of deterministic and stochastic modeling approaches for biochemical reaction systems: on fixed points, means, and modes Front. Genet. 2016 7 157 10.3389/fgene.2016.00157 27630669
2. Kim JK Marioni JC Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data Genome Biol. 2013 14 R7 10.1186/gb-2013-14-1-r7 23360624
3. Stegle O Teichmann SA Marioni JC Computational and analytical challenges in single-cell transcriptomics Nat. Rev. Genet. 2015 16 133 145 10.1038/nrg3833 25628217
4. Schnoerr D Sanguinetti G Grima R Approximation and inference methods for stochastic biochemical kinetics—a tutorial review J. Phys. A: Math. Theor. 2017 50 093001 10.1088/1751-8121/aa54d9
5. Yang J-M Integrating chemical and mechanical signals through dynamic coupling between cellular protrusions and pulsed erk activation Nat. Commun. 2018 9 4673 10.1038/s41467-018-07150-9 30405112
6. Gadgil C Lee CH Othmer HG A stochastic analysis of first-order reaction networks Bull. Math. Biol. 2005 67 901–946 10.1016/j.bulm.2004.09.009 15998488
7. Allen, L. An Introduction to Stochastic Processes with Applications to Biology (CRC Press, 2010).
8. Kelly F Reversibility and Stochastic Networks 1979 New York Wiley
9. Mairesse, J. & Nguyen, H.-T. Deficiency zero Petri nets and product form. In Franceschinis, G. & Wolf, K. (eds.) Applications and Theory of Petri Nets , 103-122 (Springer-Verlag, 2009).
10. Angeli D de Leenheer P Sontag E A Petri net approach to the study of persistence in chemical reaction networks Math. Biosci. 2007 210 598 618 10.1016/j.mbs.2007.07.003 17869313
11. Anderson DF Craciun G Kurtz TG Product-form stationary distributions for deficiency zero chemical reaction networks Bull. Math. Biol. 2010 72 1947 1970 10.1007/s11538-010-9517-4 20306147
12. Horn F Jackson R General mass action kinetics Arch. Rat. Mech. Anal. 1972 47 81 116 10.1007/BF00251225
13. Horn F Necessary and sufficient conditions for complex balancing in chemical kinetics Arch. Rat. Mech. Anal. 1972 49 172 186 10.1007/BF00255664
14. Feinberg M Complex balancing in general kinetic systems Arch. Rat. Mech. Anal. 1972 49 187 194 10.1007/BF00255665
15. Wu S Fu J Li H Petzold L Automatic identification of model reductions for discrete stochastic simulation J. Chem. Phys. 2012 137 034106 10.1063/1.4733563 22830682
16. Ghaemi, R. & Del Vecchio, D. Stochastic analysis of retroactivity in transcriptional networks through singular perturbation. In 2012 American Control Conference (ACC) , 2731–2736 (2012).
17. Mélykúti B Hespanha JP Khammash M Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks J. R. Soc. Interface 2014 11 20140054 10.1098/rsif.2014.0054 24920118
18. Hepp B Gupta A Khammash M Adaptive hybrid simulations for multiscale stochastic reaction networks J. Chem. Phys. 2015 142 034118 10.1063/1.4905196 25612700
19. Hwang HJ Velázquez JJL Bistable stochastic biochemical networks: highly specific systems with few chemicals J. Math. Chem 2013 51 1343 1375 10.1007/s10910-013-0150-y
20. Ali Al-Radhawi M Del Vecchio D Sontag ED Multi-modality in gene regulatory networks with slow promoter kinetics PLoS Comput. Biol. 2019 15 1 27 10.1371/journal.pcbi.1006784
21. Kim JK Sontag ED Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation PLoS Comput. Biol. 2017 13 1 24
22. Kan X Lee CH Othmer HG A multi-time-scale analysis of chemical reaction networks: Ii. stochastic systems J. Math. Biol. 2016 73 1081 1129 10.1007/s00285-016-0980-x 26945582
23. Anderson, D. F. & Nguyen, T. D. Prevalence of deficiency zero reaction networks in an erdos-renyi framework (2019). 1910.12723.
24. Johnston MD Translated chemical reaction networks Bull. Math. Biol. 2014 76 1081 1116 10.1007/s11538-014-9947-5 24610094
25. Johnston MD Burton E Computing weakly reversible deficiency zero network translations using elementary flux modes Bull. Math. Biol. 2019 81 1613 1644 10.1007/s11538-019-00579-z 30790189
26. Anderson DF Cotter SL Product-form stationary distributions for deficiency zero networks with non-mass action kinetics Bull. Math. Biol. 2016 78 2390 2407 10.1007/s11538-016-0220-y 27796722
27. Sontag ED Structure and stability of certain chemical networks and applications to the kinetic proofreading model of t-cell receptor signal transduction IEEE Trans. Autom. Control 2001 46 1028 1047 10.1109/9.935056
28. Beenstock J Mooshayef N Engelberg D How do protein kinases take a selfie (autophosphorylate)? Trends Biochem. Sci. 2016 41 938–953 10.1016/j.tibs.2016.08.006 27594179
29. Dodson CA Yeoh S Haq T Bayliss R A kinetic test characterizes kinase intramolecular and intermolecular autophosphorylation mechanisms Sci. Signal. 2013 6 ra54 ra54 10.1126/scisignal.2003910 23821772
30. Oda K Matsuoka Y Funahashi A Kitano H A comprehensive pathway map of epidermal growth factor receptor signaling Mol. Syst. Biol. 2005 1 2005.0010 10.1038/msb4100014 16729045
31. Wang J Wu J-W Wang Z-X Structural insights into the autoactivation mechanism of p21-activated protein kinase Structure 2011 19 1752–1761 22153498
32. Dammann K Khare V Gasche C Tracing paks from gi inflammation to cancer Gut 2014 63 1173 1184 10.1136/gutjnl-2014-306768 24811999
33. Parrini MC Lei M Harrison SC Mayer BJ Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by cdc42 and rac1 Mol. Cell 2002 9 73–83 10.1016/S1097-2765(01)00428-2 11804587
34. Zaytsev AV Bistability of a coupled aurora b kinase-phosphatase system in cell division eLife 2016 5 e10644 10.7554/eLife.10644 26765564
35. Doherty K Meere M Piiroinen PT Some mathematical models of intermolecular autophosphorylation J. Theor. Biol. 2015 370 27–38 10.1016/j.jtbi.2015.01.015 25636493
36. Wang Z-X Wu J-W Autophosphorylation kinetics of protein kinases Biochem. J. 2002 368 947 952 10.1042/bj20020557 12190618
37. Mouri K Nacher JC Akutsu T A mathematical model for the detection mechanism of dna double-strand breaks depending on autophosphorylation of atm PLoS ONE 2009 4 1 14 10.1371/journal.pone.0005131
38. Nguyen LK Kolch W Kholodenko BN When ubiquitination meets phosphorylation: a systems biology perspective of egfr/mapk signalling Cell Commun. Signal. 2013 11 52 10.1186/1478-811X-11-52 23902637
39. Luciani F Keşmir C Mishto M Or-Guil M de Boer RJ A mathematical model of protein degradation by the proteasome Biophys. J. 2005 88 2422–2432 10.1529/biophysj.104.049221 15665121
40. Tiganis T Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor IUBMB Life 2002 53 3 14 10.1080/15216540210811 12018405
41. King CC p21-activated kinase (pak1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (pdk1) J. Biol. Chem. 2000 275 41201 41209 10.1074/jbc.M006553200 10995762
42. Sessa F Villa F Structure of Aurora B–INCENP in complex with barasertib reveals a potential transinhibitory mechanism Acta Crystallogr. Sect. F 2014 70 294 298 10.1107/S2053230X14002118
43. Chen C-Y Yu Z-Y Chuang Y-S Huang R-M Wang T-CV Sulforaphane attenuates egfr signaling in nsclc cells J. Biomed. Sci. 2015 22 38 10.1186/s12929-015-0139-x 26036303
44. Gully CP Antineoplastic effects of an aurora b kinase inhibitor in breast cancer Mol. Cancer 2010 9 42 10.1186/1476-4598-9-42 20175926
45. Weisz Hubsman M Volinsky N Manser E Yablonski D Aronheim A Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp Biochem. J. 2007 404 487 497 10.1042/BJ20061696 17355222
46. Shamir M Bar-On Y Phillips R Milo R Snapshot: timescales in cell biology Cell 2016 164 1302–1302.e1 10.1016/j.cell.2016.02.058 26967295
47. Bibbona E Kim J Wiuf C Stationary distributions of systems with discreteness-induced transitions J. R. Soc. Interface 2020 17 20200243 10.1098/rsif.2020.0243
48. Rao CV Arkin AP Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm J. Chem. Phys. 2003 118 4999 5010 10.1063/1.1545446
49. Waldherr S Estimation methods for heterogeneous cell population models in systems biology J. R. Soc. Interface 2018 15 20180530 10.1098/rsif.2018.0530 30381346
50. Kremling, A. Systems biology: mathematical modeling and model analysis (CRC Press, 2013).
51. Shinar G Feinberg M Structural sources of robustness in biochemical reaction networks Science 2010 327 1389 1391 10.1126/science.1183372 20223989
52. Anderson DF Enciso GA Johnston MD Stochastic analysis of biochemical reaction networks with absolute concentration robustness J. R. Soc. Interface 2014 11 20130943 10.1098/rsif.2013.0943 24522780
53. Enciso GA Transient absolute robustness in stochastic biochemical networks J. R. Soc. Interface 2016 13 20160475 10.1098/rsif.2016.0475 27581485
54. Anderson DF Kim J Some network conditions for positive recurrence of stochastically modeled reaction networks SIAM J. Appl. Math. 2018 78 2692 2713 10.1137/17M1161427
55. Johnston MD A computational approach to extinction events in chemical reaction networks with discrete state spaces Math. Biosci. 2017 294 130–142 10.1016/j.mbs.2017.10.003 29024749
56. Johnston MD Anderson DF Craciun G Brijder R Conditions for extinction events in chemical reaction networks with discrete state spaces J. Math. Biol. 2018 76 1535 1558 10.1007/s00285-017-1182-x 28951955
57. Feinberg, M. Foundations of Chemical Reaction Network Theory (Springer, 2019).
58. Anderson, D. F. & Kurtz, T. G. Continuous time markov chain models for chemical reaction networks. In Design and analysis of biomolecular circuits , 3-42 (Springer, 2011).
59. Sontag ED Zeilberger D A symbolic computation approach to a problem involving multivariate poisson distributions Adv. Appl. Math. 2010 44 359 377 10.1016/j.aam.2009.08.002
60. Gillespie DT Exact stochastic simulation of coupled chemical reactions J. Phys. Chem. 1977 81 2340 2361 10.1021/j100540a008
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.