$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Sub-micro droplet reactors for green synthesis of Li 3 VO 4 anode materials in lithium ion batteries 원문보기

Nature communications, v.12 no.1, 2021년, pp.3081 -   

Tran Huu, Ha (Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea) ,  Vu, Ngoc Hung (Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Vietnam) ,  Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Moon, Joonhee (Advanced Nano-Surface Research Group, Korea Basic Science Institute, Daejeon, Republic of Korea) ,  Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University, Daejeon, Korea) ,  Im, Won Bin (Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

The conventional solid-state reaction suffers from low diffusivity, high energy consumption, and uncontrolled morphology. These limitations are competed by the presence of water in solution route reaction. Herein, based on concept of combining above methods, we report a facile solid-state reaction c...

참고문헌 (72)

  1. 1. Yan G Higher energy and safer sodium ion batteries via an electrochemically made disordered Na 3 V 2 (PO 4 ) 2 F 3 material Nat. Commun. 2019 10 1 –12 10.1038/s41467-018-07882-8 30602773 

  2. 2. Gong S Lee J Kim HS Development of electrode architecture using Sb–rGO composite and CMC binder for high-performance sodium-ion battery anodes J. Korean Ceram Soc. 2020 57 91 97 10.1007/s43207-019-00012-0 

  3. 3. Li Z Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials Nat. Commun. 2018 9 1 –13 10.1038/s41467-017-02088-w 29317637 

  4. 4. Wang D-Y Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode Nat. Commun. 2017 8 1 7 10.1038/s41467-016-0009-6 28232747 

  5. 5. Nitta N Wu F Lee JT Yushin G Li-ion battery materials: present and future Mater. Today 2015 18 252 264 10.1016/j.mattod.2014.10.040 

  6. 6. Shibuta Y Mild condition synthesis without high temperature process of Eu 2+ -doped barium orthosilicate nanophosphor via Water-Assisted Solid-State Reaction (WASSR) method J. Alloy. Compd. 2019 788 1009 –1012 10.1016/j.jallcom.2019.02.295 

  7. 7. Kim JK Park GD Kang YC Germanium nanoparticle-dispersed reduced graphene oxide balls synthesized by spray pyrolysis for Li-ion battery anode J. Korean Ceram Soc. 2019 56 65 70 10.4191/kcers.2019.56.1.07 

  8. 8. Ni S Approaching the theoretical capacity of Li 3 VO 4 via electrochemical reconstruction Adv. Mater. Interfaces 2016 3 1500340 10.1002/admi.201500340 

  9. 9. Li H Liu X Zhai T Li D Zhou H Li 3 VO 4 : a promising insertion anode material for lithium-ion batteries Adv. Energy Mater. 2013 3 428 432 10.1002/aenm.201200833 

  10. 10. Dong Y Duan H Park K-S Zhao Y Mo 6+ doping in Li 3 VO 4 anode for Li-ion batteries: significantly improve the reversible capacity and rate performance ACS Appl Mater. Interfaces 2017 9 27688 27696 10.1021/acsami.7b06459 28752994 

  11. 11. Wang K Enhancing the rate performance of a Li 3 VO 4 anode through Cu doping ChemElectroChem 2018 5 478 482 10.1002/celc.201701172 

  12. 12. Mu C Lei K Li H Li F Chen J Enhanced conductivity and structure stability of Ti 4+ doped Li 3 VO 4 as anodes for lithium-ion batteries J. Phys. Chem. C. 2017 121 26196 26201 10.1021/acs.jpcc.7b08197 

  13. 13. Zhang C Effects of high surface energy on lithium-ion intercalation properties of Ni-doped Li 3 VO 4 NPG Asia Mater. 2016 8 e287 e287 10.1038/am.2016.95 

  14. 14. Liu J Ultrathin Li 3 VO 4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties Nano Energy 2015 12 709 724 10.1016/j.nanoen.2014.12.019 

  15. 15. Li Q A unique hollow Li 3 VO 4 /carbon nanotube composite anode for high rate long-life lithium-ion batteries Nanoscale 2014 6 11072 10.1039/C4NR03119A 25155363 

  16. 16. Jicheng Z Prominent electrochemical performance of a Li 3 VO 4 /C–Ni anode via hierarchically porous architecture design J. Mater. Chem. A 2016 4 14101 10.1039/C6TA05988K 

  17. 17. Zhou J The enhanced cycling stability and rate capability of sodium-modified Li 3 VO 4 anode material for lithium-ion batteries Solid State Ion-. 2018 322 30 38 10.1016/j.ssi.2018.05.001 

  18. 18. Bose R Manna G Pradhan N Surface doping for hindrance of crystal growth and structural transformation in semiconductor nanocrystals J. Phys. Chem. C 2013 117 20991 20997 10.1021/jp407123s 

  19. 19. Mondal O Influence of doping on crystal growth, structure and optical properties of nanocrystalline CaTiO 3 : a case study using small-angle neutron scattering J. Appl Crystallogr. 2015 48 836 843 10.1107/S1600576715006664 

  20. 20. Gorelik VS Raman spectra of lithium compounds J. Phys. Confer. Ser. 2017 918 012035 10.1088/1742-6596/918/1/012035 

  21. 21. Shvets P Dikaya O Maksimova K Goikhman A A review of Raman spectroscopy of vanadium oxides J. Raman Spectrosc. 2019 50 1226 –1244 10.1002/jrs.5616 

  22. 22. Baddour‐Hadjean R Smirnov MB Kazimirov VY Smirnov KS Pereira‐Ramos JP The Raman spectrum of the γ′‐V 2 O 5 polymorph: a combined experimental and DFT study J. Raman Spectrosc. 2015 46 406 412 10.1002/jrs.4660 

  23. 23. Qin R One-pot synthesis of Li 3 VO 4 @C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries Sci. Bull. 2017 62 1081 1088 10.1016/j.scib.2017.07.001 

  24. 24. Zelang J Li 3 VO 4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries Chem. Commun. 2015 51 229 10.1039/C4CC07444K 

  25. 25. Shi Y Hollow structured Li 3 VO 4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries Nano Lett. 2013 13 4715 4720 10.1021/nl402237u 24024651 

  26. 26. Song T Lan Z Ma X Bai T Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution Int. J. Therm. Sci. 2009 48 2228 2236 10.1016/j.ijthermalsci.2009.05.004 

  27. 27. Wróblewski W Dykas S Two-fluid model with droplet size distribution for condensing steam flows Energy 2016 106 112 120 10.1016/j.energy.2016.03.052 

  28. 28. Yi T-F Advanced electrochemical performance of Li 4 Ti 4.95 V 0.05 O 12 as a reversible anode material down to 0V J. Power Sources 2010 195 285 288 10.1016/j.jpowsour.2009.07.040 

  29. 29. Zhou J Optimization of rate capability and cyclability performance in Li 3 VO 4 anode material through Ca doping Chem. Eur. J. 2017 23 16338 16345 10.1002/chem.201703405 28850752 

  30. 30. Yuan Y Zhan W Yi H Zhao Y Song S Molecular dynamics simulations study for the effect of cations hydration on the surface tension of the electrolyte solutions Colloids Surf. A Physicochem. Eng. Asp. 2018 539 80 84 10.1016/j.colsurfa.2017.12.005 

  31. 31. Jacques B Zeshi Z Konstantin S Metal flux and dynamic speciation at (Bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances Environ. Sci. Technol. 2007 41 7609 7620 10.1021/es070702p 18075065 

  32. 32. Biesinger MC Lau LW Gerson AR Smart RSC Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn Appl. Surf. Sci. 2010 257 887 898 10.1016/j.apsusc.2010.07.086 

  33. 33. Qiu C Yuan Z Liu L Cheng S Liu J Sol-gel synthesis and electrochemical performance of Li 4−x Mg x Ti 5−x Zr x O 12 anode material for lithium-ion batteries Chin. J. Chem. 2013 31 819 825 10.1002/cjoc.201201111 

  34. 34. Chen L Surface-amorphous and oxygen-deficient Li 3 VO 4−δ as a promising anode material for lithium-ion batteries Adv. Sci. 2015 2 1500090 10.1002/advs.201500090 

  35. 35. Sara R Jing HH Wei C Kai W Guo QX Tuning the electronic and structural properties of WO 3 nanocrystals by varying transition metal tungstate precursors RSC Adv. 2014 4 62423 10.1039/C4RA10650D 

  36. 36. Linghua J BiFeO 3 (00l)/LaNiO 3 /Si thin films with enhanced polarization: an all-solution approach RSC Adv. 2016 6 78629 10.1039/C6RA16388B 

  37. 37. Wang L Structural and electrochemical characteristics of Ca-doped “flower-like” Li 4 Ti 5 O 12 motifs as high-rate anode materials for lithium-ion batteries Chem. Mater. 2018 30 671 684 10.1021/acs.chemmater.7b03847 

  38. 38. Sen N Chunsong L Hongrui P Guicun L Kezheng C Ti 3+ self-doped Li 4 Ti 5 O 12 nanosheets as anode materials for high performance lithium ion batteries RSC Adv. 2015 5 23278 10.1039/C4RA16475J 

  39. 39. Liao C Wen Y Shan B Zhai T Li H Probing the capacity loss of Li 3 VO 4 anode upon Li insertion and extraction J. Power Sources 2017 348 48 56 10.1016/j.jpowsour.2017.02.075 

  40. 40. Song JH Electrochemical characteristics of lithium vanadate, Li 1+x VO 2 , new anode materials for lithium ion batteries J. Power Sources 2010 195 6157 6161 10.1016/j.jpowsour.2009.12.103 

  41. 41. Chunnian H Carbon-encapsulated Fe 3 O 4 nanoparticles as a high-rate lithium ion battery anode material ACS Nano 2013 7 4459 10.1021/nn401059h 23614734 

  42. 42. Gaoqi S Lin G Ying M Huiqiao L Tianyou Z Enhancing the performance of Li 3 VO 4 by combining nanotechnology and surface carbon coating for lithium ion batteries J. Mater. Chem. A 2015 3 11253 10.1039/C5TA02094H 

  43. 43. Asakura R Bolli C Novák P Robert R Insights into the charge storage mechanism of Li 3 VO 4 anode materials for Li-ion batteries ChemElectroChem 2020 7 2033 2041 10.1002/celc.202000161 

  44. 44. Grugeon S Laruelle S Dupont L Tarascon JM An update on the reactivity of nanoparticles Co-based compounds towards Li Solid State Sci. 2003 5 895 904 10.1016/S1293-2558(03)00114-6 

  45. 45. Gachot G Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries J. Power Sources 2008 178 409 421 10.1016/j.jpowsour.2007.11.110 

  46. 46. Ponrouch A Taberna P-L Simon P Palacin MR On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction Electrochim. Acta 2012 61 13 18 10.1016/j.electacta.2011.11.029 

  47. 47. Balaya P Nano-ionics in the context of lithium batteries J. Power Sources 2006 159 171 178 10.1016/j.jpowsour.2006.04.115 

  48. 48. Wang X Mo-doped SnO 2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries Nanoscale 2015 7 3604 3613 10.1039/C4NR05789A 25634442 

  49. 49. Wu R In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries Adv. Mater. 2015 27 3038 3044 10.1002/adma.201500783 25856242 

  50. 50. Wang F A quasi-solid-state Li-ion capacitor with high energy density based on Li 3 VO 4 /carbon nanofibers and electrochemically-exfoliated graphene sheets J. Mater. Chem. A 2017 5 14922 14929 10.1039/C7TA03920D 

  51. 51. Shen L Peapod-like Li 3 VO 4 /N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors Adv. Mater. 2017 29 1700142 10.1002/adma.201700142 

  52. 52. Yang S Yan B Lu L Zeng K Grain boundary effects on Li-ion diffusion in a Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 thin film cathode studied by scanning probe microscopy techniques RSC Adv. 2016 6 94000 94009 10.1039/C6RA17681J 

  53. 53. Park M Zhang X Chung M Less GB Sastry AM A review of conduction phenomena in Li-ion batteries J. Power Sources 2010 195 7904 7929 10.1016/j.jpowsour.2010.06.060 

  54. 54. Lee E-J Development of microstrain in aged lithium transition metal oxides Nano Lett. 2014 14 4873 4880 10.1021/nl5022859 24960550 

  55. 55. Chae C Noh H-J Lee JK Scrosati B Sun Y-K A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode Adv. Funct. Mater. 2014 24 3036 3042 10.1002/adfm.201303766 

  56. 56. Ngo DT Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries Energy Environ. Sci. 2015 8 3577 3588 10.1039/C5EE02183A 

  57. 57. Fang-Wei YH-JY Tuan H-Y Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization ACS Nano 2012 6 9932 9942 10.1021/nn303519g 23043347 

  58. 58. Zhanyu L Structure and electrochemical properties of Smdoped Li 4 Ti 5 O 12 as anode material for lithium-ion batteries RSC Adv. 2016 6 15492 10.1039/C5RA27142H 

  59. 59. Tran Huu, H., Nguyen Thi, X. D., Nguyen Van, K., Kim, S. J. & Vo, V. A facile synthesis of MoS 2 /g-C 3 N 4 composite as an anode material with improved lithium storage capacity. Materials 12 , 1730 (2019). 

  60. 60. Yu F Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors Mater. Horiz. 2018 5 529 535 10.1039/C8MH00156A 

  61. 61. Cook J. B. et al Pseudocapacitive charge storage in thick composite MoS 2 nanocrystal-based electrodes. Adv Energy Mater 7 , 1601283 (2017). 

  62. 62. Xiang Y Pseudocapacitive behavior of the Fe 2 O 3 anode and its contribution to high reversible capacity in lithium ion batteries Nanoscale 2018 10 18010 18018 10.1039/C8NR04871A 30226510 

  63. 63. Chen C Na + intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling Nat. Commun. 2015 6 1 8 

  64. 64. Seiichiro Tabata YI Watanabe M Inverse opal carbons derived from a polymer precursor as electrode materials for electric double-layer capacitors J. Electrochem Soc. 2008 155 K42 K49 10.1149/1.2826266 

  65. 65. Larson, A. C. & Von Dreele, R. B. Gsas. Report lAUR 86–748 (1994). 

  66. 66. Kresse G Furthmüller J Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 6 15 50 10.1016/0927-0256(96)00008-0 

  67. 67. Krukau AV Vydrov OA Izmaylov AF Scuseria GE Influence of the exchange screening parameter on the performance of screened hybrid functionals J. Chem. Phys. 2006 125 224106 10.1063/1.2404663 17176133 

  68. 68. Dudarev S Botton G Savrasov S Humphreys C Sutton A Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study Phys. Rev. B 1998 57 1505 10.1103/PhysRevB.57.1505 

  69. 69. Arroyo-de Dompablo ME Tartaj P Amarilla JM Amador U Computational Investigation of Li Insertion in Li 3 VO 4 Chem. Mater. 2016 28 5643 5651 10.1021/acs.chemmater.6b01519 

  70. 70. Arroyo-de Dompablo M Rozier P Morcrette M Tarascon J Electrochemical data transferability within Li y VOXO 4 (X = Si, Ge 0.5 Si 0.5 , Ge, Si 0.5 As 0.5 , Si 0.5 P 0.5 , As, P) polyoxyanionic compounds Chem. Mater. 2007 19 2411 2422 10.1021/cm0612696 

  71. 71. Blöchl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 10.1103/PhysRevB.50.17953 

  72. 72. Henkelman G Uberuaga BP Jónsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로