$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research 원문보기

Designed monomers and polymers, v.23 no.1, 2020년, pp.197 - 206  

Wang, Yazhen (College of Materials Science and Engineering, Qiqihar University , Qiqihar , China) ,  Shi, Zhen (College of Materials Science and Engineering, Qiqihar University , Qiqihar , China) ,  Sun, Yu (Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials , Qiqihar , China) ,  Wu, Xueying (Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials , Qiqihar , China) ,  Li, Shuang (Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials , Qiqihar , China) ,  Dong, Shaobo (Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials , Qiqihar , China) ,  Lan, Tianyu (Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials , Qiqihar , China)

Abstract AI-Helper 아이콘AI-Helper

ABSTRACTCurrently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe3O4-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe3O4 and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity...

주제어

참고문헌 (65)

  1. [1] Giovanni Tosi JT , Duskey JK. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier . J Expert Opin Drug Delivery . 2020 ; 17 ( 1 ): 23 – 32 . 

  2. [2] Kimna C , Lieleg O , et al . Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology . J Controlled Release . 2019 ; 28 : 19 – 28 . 

  3. [3] Rajasree S , Edison , Thomas TNJI , et al . Chitosan nanopolymers: an overview of drug delivery against cancer . J Int Biol Macromol . 2019 ; 130 : 727 – 736 . 

  4. [4] Guo-Ying S , Yi-Chen , Cui Y, et al . Terminal deoxynucleotidyl transferase-catalyzed preparation of pH-responsive DNA nanocarriers for tumor-targeted drug delivery and therapy . J ACS Appl Mater Interfaces . 2019 ; 11 : 14684 – 14692 . 

  5. [5] B K L , E C T , S D K . The use of magnetic targeting for drug delivery into cardiac myocytes . J Magn Magn Mater . 2018 ; 473 : 21 – 25 . 

  6. [6] R D J , Gupta P , Garcia E , et al . Nanoparticle based treatment for cardiovascular diseases . J Cardiovasc Hematol Disord Drug Targets . 2018 ; 19 : 33 – 44 . 

  7. [7] Piumi Y , Liyanage SD , Hettiarachchi YZ , et al . Nanoparticle-mediated targeted drug delivery for breast cancer treatment . J Biochimica et Biophysica Acta (BBA) . 2019 ; 1871 : 419 – 433 . 

  8. [8] Xiaolei G , Wei , Yaohua Y , et al . cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo . J Controlled Release . 2019 ; 301 : 110 – 118 . 

  9. [9] Ali D , Hedayatnasab , Ziba Z , et al . Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition . J Int J Hyper . 2019 ; 36 : 104 – 114 . 

  10. [10] Pritam S , Kunda M, Chatterjee S, et al . Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy . J Mater Sci Eng . 2019 ; 100 : 129 – 140 . 

  11. [11] Patel J , Misra A , Javia A , et al . Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR Overexpressed lung tumor cells . J Microencapsulation . 2018 ; 35 : 204 – 217 . 29542378 

  12. [12] Firdos A , Akhtar , Khan S , et al . Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation . J Artificial Cells Nanomed Biotechnol . 2019 ; 47 : 1533 – 1542 . 

  13. [13] Xuan S , Wang F , Lai JMY , et al . Synthesis of biocompatible, mesoporous Fe 3 O 4 Nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications . J ACS Appl Mater Interfaces . 2011 ; 3 : 237 – 244 . 

  14. [14] Xu L , Qiu L , Sheng Y , et al . Biodegradable pH-responsive hydrogels for controlled dual-drug release . J Mater Chem B . 2017 ; 6 : 510 – 517 . 

  15. [15] Thanh VM , Nguyen TH , Tran TV , et al . Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release . J Mater Sci Eng C Mater Biol Appl . 2018 ; 82 : 291 – 298 . 

  16. [16] Li Y , Jin J , Wang D , et al . Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy . J Nano Res . 2018 ; 16 : 3294 – 3305 . 

  17. [17] Ling W , Wang M , Xiong C , et al . Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles . J Mater Res . 2019 ; 34 : 1828 – 1844 . 

  18. [18] Pillarisetti S , Uthaman S , Huh KM , et al . Multimodal composite iron oxide nanoparticles for biomedical applications . J Tissue Eng Regenerative Med . 2019 ; 16 : 451 – 465 . 

  19. [19] Rasouli E , Basirun WJ , Johan MR , et al . Facile and greener hydrothermal honey-based synthesis of Fe 3 O 4 /Au core/shell nanoparticles for drug delivery applications . J Cellular Biochem . 2018 ; 120 : 6624 – 6631 . 30368873 

  20. [20] Gyergyek S , Makovec D , Jagodi M , et al . Hydrothermal growth of iron oxide NPs with a uniform size distribution for magnetically induced hyperthermia: structural, colloidal and magnetic properties . J Alloys Compd . 2017 ; 694 : 261 – 271 . 

  21. [21] Wang W , Lin J , Xing C , et al . Fe 3 O 4 nanoparticle-coated boron nitride nanospheres: synthesis, magnetic property and biocompatibility study . J Ceramics Int . 2017 ; 43 : 6371 – 6376 . 

  22. [22] Peralta ME , Jadhav SA , Magnacca G , et al . Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery . J Colloid Interface Sci . 2019 ; 544 : 198 – 205 . 30844568 

  23. [23] Perera AS , Zhang S , Homer-Vanniasinkam S , et al . Polymer-magnetic composite fibers for remote-controlled drug release . J ACS Appl Mater Interfaces . 2018 ; 10 : 15524 – 15531 . 

  24. [24] Yadavalli T , Ramasamy S , Chandrasekaran G , et al . Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery . J Magn Magn Mater . 2015 ; 380 : 315 – 320 . 

  25. [25] Zhang J , Misra RDK . Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response . J Acta Biomaterialia . 2007 ; 3 : 838 – 850 . 

  26. [26] Dong Y , Chen H , Chen C , et al . Polymer-lipid hybrid theranostic nanoparticles co-delivering ultrasmall superparamagnetic iron oxide and paclitaxel for targeted magnetic resonance imaging and therapy in atherosclerotic plaque . J Biomed Nanotechnol . 2016 ; 12 : 1245 – 1257 . 27319218 

  27. [27] Nosrati H , Sefidi N , Sharafi A , et al . Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug . J Bioorganic Chem . 2018 ; 76 : 501 – 509 . 

  28. [28] Prerana C , Balaji , Wang Q et al . Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases . J Pharm . 2018 ; 55 : 49 – 62 . 

  29. [29] Yew YP , Shameli K , Miyake M , et al . Green biosynthesis of superparamagnetic magnetite Fe 3 O 4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review . J Arabian Chem . 2020 ; 13 : 2287 – 2308 . 

  30. [30] Yu J , Zhao F , Gao W , et al . Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe 5 C 2 @Fe 3 O 4 nanoparticles . J ACS Nano . 2019 ; 13 : 10002 – 10014 . 

  31. [31] Arriortua OK , Insausti M , Lezama L , et al . RGD-functionalized Fe 3 O 4 , nanoparticles for magnetic hyperthermia . J Colloids Surf B Biointerfaces . 2018 ; 165 ( 2018 ): 315 – 324 . 

  32. [32] Tao C , Chen T , Liu H , et al . Design of biocompatible Fe 3 O 4 @MPDA mesoporous core-shell nanospheres for drug delivery . J Microporous Mesoporous Mater . 2019 ; 293 : 109823 . 

  33. [33] Tarhan T , Ulu A , Sariçam M , et al . Maltose functionalized magnetic Core/Shell Fe 3 O 4 @Au nanoparticles for an efficient L-Asparaginase immobilization . J Biol Macromol . 2020 ; 142 : 443 – 451 . 

  34. [34] Masood F . Polymeric nanoparticles for targeted drug delivery system for cancer therapy . J Mater Sci Eng C . 2016 ; 60 : 569 – 578 . 

  35. [35] Alireza H , Irandoust M, Soleimani E, et al . Increasing the anticancer activity of azidothymidine toward the breast cancer via rational design of magnetic drug carrier based on molecular imprinting technology . J Mater Sci Eng C . 2019 ; 103 : 109771 . 

  36. [36] Hu X , Wang Y , Zhang L , et al . design of a pH-sensitive magnetic composite hydrogel based on salecan graft copolymer and Fe 3 O 4 @SiO 2 nanoparticles as drug carrier . J Biol Macromol . 2018 ; 107 : 1811 – 1820 . 

  37. [37] Sargazi G , Afzali D , Mostafavi A , et al . Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning . J Polym Environ . 2018 ; 26 : 1804 – 1817 . 

  38. [38] El-Newehy MH , El-Naggar ME , Alotaiby S , et al . Preparation of biocompatible system based on electrospun CMC/PVA nanofibers as controlled release carrier of diclofenac sodium . J Macromol Sci A . 2016 ; 53 : 566 – 573 . 

  39. [39] Engelke L , Winter G , Engert J . Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery . J Euro J Pharm Biopharm . 2018 ; 128 : 119 – 130 . 

  40. [40] Dathathri E , Lal S , Mittal M , et al . Fabrication of low-cost composite polymer-based micro needle patch for transdermal drug delivery . J Appl Nanosci . 2020 ; 10 : 371 – 377 . 

  41. [41] Sha Y , Yun , Sixin-Cui, et al . Chitosan-polyvinyl alcohol nanoscale liquid film-forming system facilitates MRSA-infected wound healing by enhancing antibacterial and antibiofilm properties . J IntNanomed . 2018 ; 13 : 4987 – 5002 . 

  42. [42] Rac V , Levi S , Balan B , et al . PVA Cryogel as model hydrogel for iontophoretic transdermal drug delivery investigations. Comparison with PAA/PVA and PAA/PVP interpenetrating networks . J Colloids Surf B . 2019 ; 180 : 441 – 448 . 

  43. [43] Piacentini E , Bazzzarelli F, Poerio A, et al . Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)- microparticles via membrane emulsification: influence of process and formulation parameters on structural and functional properties . J Mater Commun . 2020 ; 24 : 100067 . 

  44. [44] Anirudhan TS , Parvathy J , Nair AS , et al . A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs . J Carbohydr Polym . 2016 ; 136 : 1118 – 1127 . 

  45. [45] Yang W , Fortunati E , Bertoglio F , et al . Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles . J Carbohydrate Polym . 2018 ; 181 : 275 – 284 . 

  46. [46] Nguyen CN , Nguyen TTT , Nguyen HT , et al . Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac . J Drug Delivery Transl Res . 2017 ; 7 : 664 – 673 . 

  47. [47] El-Naggar A , Senna , Wahab MM , et al . Radiation synthesis and drug delivery properties of interpenetrating networks (IPNs) based on poly(vinyl alcohol)/methylcellulose blend hydrogels . J Biol Macromol . 2017 ; 102 : 1045 – 1051 . 

  48. [48] George L , Bavya MC , Rohan KV , et al . A therapeutic polyelectrolyte–vitamin C nanoparticulate system in a polyvinyl alcohol–alginate hydrogel: an approach to treat skin and soft tissue infection caused by, Staphylococcus aureus . J Colloids Surf B Biointerfaces . 2017 ; 160 : 315 – 324 . 

  49. [49] Shamloo A , Sarmadi M , Aghababaie Z , et al . Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres . J Int J Pharm . 2018 ; 537 : 278 – 289 . 

  50. [50] Yang CY , Song B , Ao Y , et al . biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system . J Biomater . 2009 ; 30 : 2881 – 2898 . 

  51. [51] Patel A , Gaharwar AK , Iviglia G , et al . Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers . J Biomater . 2013 ; 34 : 3970 – 3983 . 

  52. [52] Duggan S , Cummins W , O’ Donovan O , et al . Thiolated polymers as mucoadhesive drug delivery systems . J Euro J Pharm Sci . 2017 ; 100 : 64 – 78 . 

  53. [53] Suchaoin W , De Sousa IP , Netsomboon K , et al . Mucoadhesive polymers: synthesis and in vitro characterization of thiolated Poly (vinyl alcohol) . J Int J Pharm . 2016 ; 503 : 141 – 149 . 

  54. [54] Shih H , H Y L , Lin CC . Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine . J Biomater Sci . 2017 ; 5 : 589 – 599 . 

  55. [55] Zhaoyang C , Sun , Qian Q , et al . Highly sensitive detection of cysteine over glutathione and homo-cysteine: new insight into the Michael addition of mercapto group to maleimide . J Biosensors Bioelectron . 2017 ; 91 : 553 – 559 . 

  56. [56] Xue-ying W , Ya-zhen W , Yu-tao D , et al . Preparation and thermal decomposition kinetics of novel silane coupling agent with Mercapto Group . J Nanomater . 2019 ; 10 : 1 – 9 . 

  57. [57] Weitz JI , Lensing AWA , Prins MH , et al . Rivaroxaban or aspirin for extended treatment of venous thromboembolism . J New Eng J Med . 2017 ; 376 : 1211 – 1222 . 

  58. [58] Ornelas A , Zacharias-Millward N , Menter DG , et al . Beyond COX-1: the effects of Aspirin on platelet biology and potential mechanisms of chemoprevention . J Cancer Metastasis Rev . 2017 ; 36 : 289 – 303 . 

  59. [59] Lucotti S , Cerutti C , Soyer M, et al . Abstract 4196: Aspirin inhibits metastasis in the intravascular phase through the blockade of COX-1-TXA2 pathway in platelets . J Cancer Research.  2018 ; 78 : 4198 – 4206 . 

  60. [60] Lee J , Jeong L , Jung E , et al . Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases . J Controlled Release . 2019 ; 304 : 164 – 172 . 

  61. [61] Gang T , Wang , Yejing Y , et al . Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application . J Mater Sci Eng C Mater Biol Appl . 2019 ; 101 : 341 – 351 . 

  62. [62] Wu H , Cheng K , He Y , et al . Fe 3 O 4 -based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and fenton reaction . J ACS Biomater Sci Eng . 2018 ; 7 : 1 – 46 . 

  63. [63] Zhou L , Benzhao H , Zhang F , et al . Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic Poly(vinyl alcohol) gel beads for drug delivery . J ACS Appl Mater Interfaces . 2012 ; 4 : 192 – 199 . 

  64. [64] W Q H , Zettl A . Coating single-walled carbon nanotubes with tin oxide . J Nano Letters . 2003 ; 3 : 681 – 683 . 

  65. [65] Venkateswarlu S , Lee D , Yoon M . Bioinspired 2D-carbon flakes and Fe 3 O 4 nanoparticles composite for arsenite removal . J ACS Appl Mater Interfaces . 2016 ; 8 : 23876 – 23885 . 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로