최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of manufacturing science and engineering, v.143 no.11, 2021년, pp.111003 -
Paresi, Prudvi Reddy (Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia) , Narayanan, Arunachalam , Lou, Yanshan (Manufacturing Engineering Section, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India) , Yoon, Jeong Whan (School of Mechanical Engineering, Xi'an Jiaotong University, Shanxi 710049, China)
AbstractNumerical modeling of the plastic deformation and fracture during the high-speed machining is highly challengeable. Consequently, there is a need for an advanced constitutive model and fracture criterion to make the numerical models more reliable. The aim of the present study is to extend th...
Procedia Eng. Seshadri 64 1454 2013 10.1016/j.proeng.2013.09.227 Finite Element Simulation of the Orthogonal Machining Process With Al 2024 T351 Aerospace Alloy
Simul. Model. Pract. Theory Maranhao 18 2 139 2010 10.1016/j.simpat.2009.10.001 Finite Element Modelling of Machining of AISI 316 Steel: Numerical Simulation and Experimental Validation
J. Mater. Process. Technol. Umbrello 196 1-3 79 2008 10.1016/j.jmatprotec.2007.05.007 Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4 V Alloy
Int. J. Mach. Tools Manuf. Sima 50 11 943 2010 10.1016/j.ijmachtools.2010.08.004 Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6Al-4 V
Int. J. Mach. Tools Manuf. Calamaz 48 3-4 275 2008 10.1016/j.ijmachtools.2007.10.014 A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4 V
ASME J. Manuf. Sci. Eng. Wang 141 1 011012 2019 10.1115/1.4041915 A Modified Johnson-Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy
Int. J. Adv. Manuf. Technol. Huang 97 9 3655 2018 10.1007/s00170-018-2210-8 An Improved Material Constitutive Model Considering Temperature-Dependent Dynamic Recrystallization for Numerical Analysis of Ti-6Al-4V Alloy Machining
Mater. Sci. Eng. A Niu 789 139612 2020 10.1016/j.msea.2020.139612 A Modified Johnson-Cook Model Considering Strain Softening of A356 Alloy
Adv. Eng. Mater. Chen 23 1 2000704 2021 10.1002/adem.202000704 An Enhanced Johnson-Cook Model for Hot Compressed A356 Aluminum Alloy
Int. J. Mech. Sci. Arrazola 52 1 31 2010 10.1016/j.ijmecsci.2009.10.001 Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
Int. J. Mach. Tools Manuf. Ozel 46 5 518 2006 10.1016/j.ijmachtools.2005.07.001 The Influence of Friction Models on Finite Element Simulations of Machining
Int. J. Mech. Sci. Abushawashi 74 133 2013 10.1016/j.ijmecsci.2013.05.007 A Novel Approach for Determining Material Constitutive Parameters for a Wide Range of Triaxiality Under Plane Strain Loading Conditions
J. Mater. Process. Technol. McClain 123 1 114 2002 10.1016/s0924-0136(02)00052-3 A Numeric Investigation of the Rake Face Stress Distribution in Orthogonal Machining
J. Mater. Process. Technol. Mamalis 123 3 464 2002 10.1016/s0924-0136(02)00133-4 Modelling of Precision Hard Cutting Using Implicit Finite Element Methods
J. Mater. Process. Technol. Sasahara 62 4 448 1996 10.1016/s0924-0136(96)02451-x FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer
J. Mater. Process. Technol. Lo 121 2-3 285 2002 10.1016/s0924-0136(01)01259-6 An Investigation of Sticking Behavior on the Chip-Tool Interface Using Thermo-Elastic-Plastic Finite Element Method
Int. J. Adv. Manuf. Technol. Shi 27 7-8 645 2006 10.1007/s00170-004-2242-0 On Predicting Chip Morphology and Phase Transformation in Hard Machining
J. Mater. Process. Technol. Jaspers 122 2-3 322 2002 10.1016/s0924-0136(01)01228-6 Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
Int. J. Mech. Sci. Yang 44 4 703 2002 10.1016/s0020-7403(02)00008-5 A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method
Int. J. Mech. Sci. Lin 43 2 381 2001 10.1016/S0020-7403(00)00015-1 2-D Discontinuous Chip Cutting Model by Using Strain Energy Density Theory and Elastic-Plastic Finite Element Method
Theor. Appl. Fract. Mech. Lin 35 2 137 2001 10.1016/S0167-8442(00)00055-0 Three-Dimensional Elastic-Plastic Finite Element Analysis for Orthogonal Cutting With Discontinuous Chip of 6-4 Brass
J. Mater. Process. Technol. Zhang 89-90 273 1999 10.1016/S0924-0136(99)00023-0 On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method
Int. J. Damage. Mech. Besson 19 1 3 2010 10.1177/1056789509103482 Continuum Models of Ductile Fracture: A Review
ASME J. Manuf. Sci. Eng. Liu 136 1 011010 2013 10.1115/1.4025625 Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes
Acta Metall. Goods 27 1 1 1979 10.1016/0001-6160(79)90051-8 Overview No. 1: The Nucleation of Cavities by Plastic Deformation
Metallurgical Transactions A Argon 6 4 825 1975 10.1007/BF02672306 Cavity Formation From Inclusions in Ductile Fracture
ASME J. Appl. Mech. McClintock 35 2 363 1968 10.1115/1.3601204 A Criterion for Ductile Fracture by the Growth of Holes
J. Mech. Phys. Solids Rice 17 3 201 1969 10.1016/0022-5096(69)90033-7 On the Ductile Enlargement of Voids in Triaxial Stress Fields*
J. Mater. Process. Technol. Hua 150 1-2 124 2004 10.1016/j.jmatprotec.2004.01.028 Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys
Int. J. Mech. Sci. Atkins 45 2 373 2003 10.1016/S0020-7403(03)00040-7 Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
Mach. Sci. Technol. Abushawashi 21 1 1 2017 10.1080/10910344.2015.1133913 Practical Applications of the “Energy-Triaxiality” State Relationship in Metal Cutting
Int. J. Plast. Lou 54 56 2014 10.1016/j.ijplas.2013.08.006 Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality
Int. J. Solids Struct. Lou 50 2 447 2013 10.1016/j.ijsolstr.2012.10.007 Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter
J. Mech. Work. Technol. Oyane 4 1 65 1980 10.1016/0378-3804(80)90006-6 Criteria for Ductile Fracture and Their Applications
ASME J. Eng. Ind. Oh 101 1 36 1979 10.1115/1.3439471 Ductile Fracture in Axisymmetric Extrusion and Drawing-Part 2: Workability in Extrusion and Drawing
Int. J. Plast. Bai 24 6 1071 2008 10.1016/j.ijplas.2007.09.004 A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
Int. J. Mech. Sci. Bao 46 1 81 2004 10.1016/j.ijmecsci.2004.02.006 On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
Int. J. Solids Struct. Lou 49 25 3605 2012 10.1016/j.ijsolstr.2012.02.016 New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
Int. J. Adv. Manuf. Technol. Yaich 93 1-4 283 2016 10.1007/s00170-016-8934-4 Numerical Analysis of Constitutive Coefficients Effects on FE Simulation of the 2D Orthogonal Cutting Process: Application to the Ti6Al4 V
Int. J. Mech. Sci. Pan 115-116 262 2016 10.1016/j.ijmecsci.2016.06.019 Zones of Material Separation in Simulations of Cutting
Mach. Sci. Technol. Jagadesh 19 4 593 2015 10.1080/10910344.2015.1085318 Mechanistic and Finite Element Model for Prediction of Cutting Forces During Micro-turning of Titanium Alloy
J. Mech. Phys. Solids Hancock 24 2 147 1976 10.1016/0022-5096(76)90024-7 On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States
Eng. Fract. Mech. Xue 75 11 3343 2008 10.1016/j.engfracmech.2007.07.022 Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials
Int. J. Mach. Tools Manuf. Mabrouki 48 11 1187 2008 10.1016/j.ijmachtools.2008.03.013 Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
Eng. Fract. Mech. Bao 72 7 1049 2005 10.1016/j.engfracmech.2004.07.011 On the Cut-Off Value of Negative Triaxiality for Fracture
Mater. Des. Wang 98 68 2016 10.1016/j.matdes.2016.03.012 Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4 V
Simul. Modell. Pract. Theory Buchkremer 55 10 2015 10.1016/j.simpat.2015.03.009 Finite-Element-Analysis of the Relationship Between Chip Geometry and Stress Triaxiality Distribution in the Chip Breakage Location of Metal Cutting Operations
J. Mater. Process. Technol. Buchkremer 214 3 599 2014 10.1016/j.jmatprotec.2013.10.014 FE-simulation of Machining Processes With a New Material Model
Int. J. Plast. Khan 35 1 2012 10.1016/j.ijplas.2012.01.003 A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy
Int. J. Plast. Pandya 135 102788 2020 10.1016/j.ijplas.2020.102788 Strain Rate and Temperature Dependent Fracture of Aluminum Alloy 7075: Experiments and Neural Network Modeling
J. Mater. Process. Technol. Lou 213 8 1284 2013 10.1016/j.jmatprotec.2013.03.001 Prediction of Ductile Fracture for Advanced High Strength Steel With a New Criterion: Experiments and Simulation
Int. J. Mater. Form. Asad 1 SUPPL. 1 499 2008 10.1007/s12289-008-0150-9 Dry Cutting Study of an Aluminium Alloy (A2024-T351): A Numerical and Experimental Approach
Int. J. Solids Struct. Dunand 47 9 1130 2010 10.1016/j.ijsolstr.2009.12.011 Hybrid Experimental-Numerical Analysis of Basic Ductile Fracture Experiments for Sheet Metals
Eng. Fract. Mech. Teng 73 12 1653 2006 10.1016/j.engfracmech.2006.01.009 Evaluation of Six Fracture Models in High Velocity Perforation
Int. J. Automot. Technol. Paresi 20 1 79 2019 10.1007/s12239-019-0130-8 Enhanced Constitutive Model for Aeronautic Aluminium Alloy (AA2024-T351) Under High Strain Rates and Elevated Temperatures
CIRP Ann. Aurich 55 1 47 2006 10.1016/S0007-8506(07)60363-1 3D Finite Element Modelling of Segmented Chip Formation
CIRP Ann. Shivpuri 51 1 71 2002 10.1016/s0007-8506(07)61468-1 Microstructure-Mechanics Interactions in Modeling Chip Segmentation During Titanium Machining
ASME J. Manuf. Sci. Eng. Zhang 138 8 2016 10.1115/1.4032583 Chip Fracture Behavior in the High Speed Machining of Titanium Alloys
Int. J. Adv. Manuf. Technol. Ambati 53 1-4 313 2010 10.1007/s00170-010-2818-9 FEM Mesh-Dependence in Cutting Process Simulations
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.