$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Finite Element Modeling for Orthogonal Machining of AA2024-T351 Alloy With an Advanced Fracture Criterion

Journal of manufacturing science and engineering, v.143 no.11, 2021년, pp.111003 -   

Paresi, Prudvi Reddy (Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia) ,  Narayanan, Arunachalam ,  Lou, Yanshan (Manufacturing Engineering Section, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India) ,  Yoon, Jeong Whan (School of Mechanical Engineering, Xi'an Jiaotong University, Shanxi 710049, China)

Abstract AI-Helper 아이콘AI-Helper

AbstractNumerical modeling of the plastic deformation and fracture during the high-speed machining is highly challengeable. Consequently, there is a need for an advanced constitutive model and fracture criterion to make the numerical models more reliable. The aim of the present study is to extend th...

참고문헌 (64)

  1. Procedia Eng. Seshadri 64 1454 2013 10.1016/j.proeng.2013.09.227 Finite Element Simulation of the Orthogonal Machining Process With Al 2024 T351 Aerospace Alloy 

  2. Simul. Model. Pract. Theory Maranhao 18 2 139 2010 10.1016/j.simpat.2009.10.001 Finite Element Modelling of Machining of AISI 316 Steel: Numerical Simulation and Experimental Validation 

  3. J. Mater. Process. Technol. Umbrello 196 1-3 79 2008 10.1016/j.jmatprotec.2007.05.007 Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4 V Alloy 

  4. Int. J. Mach. Tools Manuf. Sima 50 11 943 2010 10.1016/j.ijmachtools.2010.08.004 Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6Al-4 V 

  5. Int. J. Mach. Tools Manuf. Calamaz 48 3-4 275 2008 10.1016/j.ijmachtools.2007.10.014 A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4 V 

  6. ASME J. Manuf. Sci. Eng. Wang 141 1 011012 2019 10.1115/1.4041915 A Modified Johnson-Cook Constitutive Model and Its Application to High Speed Machining of 7050-T7451 Aluminum Alloy 

  7. Int. J. Adv. Manuf. Technol. Huang 97 9 3655 2018 10.1007/s00170-018-2210-8 An Improved Material Constitutive Model Considering Temperature-Dependent Dynamic Recrystallization for Numerical Analysis of Ti-6Al-4V Alloy Machining 

  8. Mater. Sci. Eng. A Niu 789 139612 2020 10.1016/j.msea.2020.139612 A Modified Johnson-Cook Model Considering Strain Softening of A356 Alloy 

  9. Adv. Eng. Mater. Chen 23 1 2000704 2021 10.1002/adem.202000704 An Enhanced Johnson-Cook Model for Hot Compressed A356 Aluminum Alloy 

  10. Int. J. Mech. Sci. Arrazola 52 1 31 2010 10.1016/j.ijmecsci.2009.10.001 Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining 

  11. Int. J. Mach. Tools Manuf. Ozel 46 5 518 2006 10.1016/j.ijmachtools.2005.07.001 The Influence of Friction Models on Finite Element Simulations of Machining 

  12. Metal Cutting Mechanics Astakhov 1998 10.1201/9781466571778 

  13. Int. J. Mech. Sci. Abushawashi 74 133 2013 10.1016/j.ijmecsci.2013.05.007 A Novel Approach for Determining Material Constitutive Parameters for a Wide Range of Triaxiality Under Plane Strain Loading Conditions 

  14. J. Mater. Process. Technol. McClain 123 1 114 2002 10.1016/s0924-0136(02)00052-3 A Numeric Investigation of the Rake Face Stress Distribution in Orthogonal Machining 

  15. J. Mater. Process. Technol. Mamalis 123 3 464 2002 10.1016/s0924-0136(02)00133-4 Modelling of Precision Hard Cutting Using Implicit Finite Element Methods 

  16. J. Mater. Process. Technol. Sasahara 62 4 448 1996 10.1016/s0924-0136(96)02451-x FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer 

  17. J. Mater. Process. Technol. Lo 121 2-3 285 2002 10.1016/s0924-0136(01)01259-6 An Investigation of Sticking Behavior on the Chip-Tool Interface Using Thermo-Elastic-Plastic Finite Element Method 

  18. Heinstein 1997 10.2172/563721 Simulation of Orthogonal Cutting With Smooth Particle Hydrodynamics 

  19. Int. J. Adv. Manuf. Technol. Shi 27 7-8 645 2006 10.1007/s00170-004-2242-0 On Predicting Chip Morphology and Phase Transformation in Hard Machining 

  20. J. Mater. Process. Technol. Jaspers 122 2-3 322 2002 10.1016/s0924-0136(01)01228-6 Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone 

  21. Int. J. Mech. Sci. Yang 44 4 703 2002 10.1016/s0020-7403(02)00008-5 A New Stress-Based Model of Friction Behavior in Machining and Its Significant Impact on Residual Stresses Computed by Finite Element Method 

  22. Int. J. Mech. Sci. Lin 43 2 381 2001 10.1016/S0020-7403(00)00015-1 2-D Discontinuous Chip Cutting Model by Using Strain Energy Density Theory and Elastic-Plastic Finite Element Method 

  23. Theor. Appl. Fract. Mech. Lin 35 2 137 2001 10.1016/S0167-8442(00)00055-0 Three-Dimensional Elastic-Plastic Finite Element Analysis for Orthogonal Cutting With Discontinuous Chip of 6-4 Brass 

  24. J. Mater. Process. Technol. Zhang 89-90 273 1999 10.1016/S0924-0136(99)00023-0 On the Separation Criteria in the Simulation of Orthogonal Metal Cutting Using the Finite Element Method 

  25. Int. J. Damage. Mech. Besson 19 1 3 2010 10.1177/1056789509103482 Continuum Models of Ductile Fracture: A Review 

  26. ASME J. Manuf. Sci. Eng. Liu 136 1 011010 2013 10.1115/1.4025625 Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes 

  27. Acta Metall. Goods 27 1 1 1979 10.1016/0001-6160(79)90051-8 Overview No. 1: The Nucleation of Cavities by Plastic Deformation 

  28. Metallurgical Transactions A Argon 6 4 825 1975 10.1007/BF02672306 Cavity Formation From Inclusions in Ductile Fracture 

  29. ASME J. Appl. Mech. McClintock 35 2 363 1968 10.1115/1.3601204 A Criterion for Ductile Fracture by the Growth of Holes 

  30. J. Mech. Phys. Solids Rice 17 3 201 1969 10.1016/0022-5096(69)90033-7 On the Ductile Enlargement of Voids in Triaxial Stress Fields* 

  31. J. Mater. Process. Technol. Hua 150 1-2 124 2004 10.1016/j.jmatprotec.2004.01.028 Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys 

  32. Int. J. Mech. Sci. Atkins 45 2 373 2003 10.1016/S0020-7403(03)00040-7 Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems 

  33. Mach. Sci. Technol. Abushawashi 21 1 1 2017 10.1080/10910344.2015.1133913 Practical Applications of the “Energy-Triaxiality” State Relationship in Metal Cutting 

  34. Int. J. Plast. Lou 54 56 2014 10.1016/j.ijplas.2013.08.006 Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality 

  35. Int. J. Solids Struct. Lou 50 2 447 2013 10.1016/j.ijsolstr.2012.10.007 Extension of a Shear-Controlled Ductile Fracture Model Considering the Stress Triaxiality and the Lode Parameter 

  36. J. Mech. Work. Technol. Oyane 4 1 65 1980 10.1016/0378-3804(80)90006-6 Criteria for Ductile Fracture and Their Applications 

  37. ASME J. Eng. Ind. Oh 101 1 36 1979 10.1115/1.3439471 Ductile Fracture in Axisymmetric Extrusion and Drawing-Part 2: Workability in Extrusion and Drawing 

  38. Int. J. Plast. Bai 24 6 1071 2008 10.1016/j.ijplas.2007.09.004 A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence 

  39. Int. J. Mech. Sci. Bao 46 1 81 2004 10.1016/j.ijmecsci.2004.02.006 On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space 

  40. Int. J. Solids Struct. Lou 49 25 3605 2012 10.1016/j.ijsolstr.2012.02.016 New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals 

  41. Int. J. Adv. Manuf. Technol. Yaich 93 1-4 283 2016 10.1007/s00170-016-8934-4 Numerical Analysis of Constitutive Coefficients Effects on FE Simulation of the 2D Orthogonal Cutting Process: Application to the Ti6Al4 V 

  42. Int. J. Mech. Sci. Pan 115-116 262 2016 10.1016/j.ijmecsci.2016.06.019 Zones of Material Separation in Simulations of Cutting 

  43. Mach. Sci. Technol. Jagadesh 19 4 593 2015 10.1080/10910344.2015.1085318 Mechanistic and Finite Element Model for Prediction of Cutting Forces During Micro-turning of Titanium Alloy 

  44. J. Mech. Phys. Solids Hancock 24 2 147 1976 10.1016/0022-5096(76)90024-7 On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States 

  45. Eng. Fract. Mech. Xue 75 11 3343 2008 10.1016/j.engfracmech.2007.07.022 Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials 

  46. Int. J. Mach. Tools Manuf. Mabrouki 48 11 1187 2008 10.1016/j.ijmachtools.2008.03.013 Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351) 

  47. Eng. Fract. Mech. Bao 72 7 1049 2005 10.1016/j.engfracmech.2004.07.011 On the Cut-Off Value of Negative Triaxiality for Fracture 

  48. Mater. Des. Wang 98 68 2016 10.1016/j.matdes.2016.03.012 Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4 V 

  49. Simul. Modell. Pract. Theory Buchkremer 55 10 2015 10.1016/j.simpat.2015.03.009 Finite-Element-Analysis of the Relationship Between Chip Geometry and Stress Triaxiality Distribution in the Chip Breakage Location of Metal Cutting Operations 

  50. J. Mater. Process. Technol. Buchkremer 214 3 599 2014 10.1016/j.jmatprotec.2013.10.014 FE-simulation of Machining Processes With a New Material Model 

  51. Int. J. Plast. Khan 35 1 2012 10.1016/j.ijplas.2012.01.003 A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy 

  52. Int. J. Plast. Pandya 135 102788 2020 10.1016/j.ijplas.2020.102788 Strain Rate and Temperature Dependent Fracture of Aluminum Alloy 7075: Experiments and Neural Network Modeling 

  53. Luo 2010 10.1063/1.3457590 Numerical Analysis of AHSS Fracture in a Stretch-Bending Test 

  54. J. Mater. Process. Technol. Lou 213 8 1284 2013 10.1016/j.jmatprotec.2013.03.001 Prediction of Ductile Fracture for Advanced High Strength Steel With a New Criterion: Experiments and Simulation 

  55. Int. J. Mater. Form. Asad 1 SUPPL. 1 499 2008 10.1007/s12289-008-0150-9 Dry Cutting Study of an Aluminium Alloy (A2024-T351): A Numerical and Experimental Approach 

  56. Int. J. Solids Struct. Dunand 47 9 1130 2010 10.1016/j.ijsolstr.2009.12.011 Hybrid Experimental-Numerical Analysis of Basic Ductile Fracture Experiments for Sheet Metals 

  57. Eng. Fract. Mech. Teng 73 12 1653 2006 10.1016/j.engfracmech.2006.01.009 Evaluation of Six Fracture Models in High Velocity Perforation 

  58. Int. J. Automot. Technol. Paresi 20 1 79 2019 10.1007/s12239-019-0130-8 Enhanced Constitutive Model for Aeronautic Aluminium Alloy (AA2024-T351) Under High Strain Rates and Elevated Temperatures 

  59. CIRP Ann. Aurich 55 1 47 2006 10.1016/S0007-8506(07)60363-1 3D Finite Element Modelling of Segmented Chip Formation 

  60. CIRP Ann. Shivpuri 51 1 71 2002 10.1016/s0007-8506(07)61468-1 Microstructure-Mechanics Interactions in Modeling Chip Segmentation During Titanium Machining 

  61. ASME J. Manuf. Sci. Eng. Zhang 138 8 2016 10.1115/1.4032583 Chip Fracture Behavior in the High Speed Machining of Titanium Alloys 

  62. Zhang 2014 10.1115/MSEC2014-3915 Stress Triaxiality in Chip Segmentation During High Speed Machining of Titanium Alloy 

  63. Int. J. Adv. Manuf. Technol. Ambati 53 1-4 313 2010 10.1007/s00170-010-2818-9 FEM Mesh-Dependence in Cutting Process Simulations 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로