$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Improved cortical activity and reduced gait asymmetry during poststroke self-paced walking rehabilitation 원문보기

Journal of neuroengineering and rehabilitation, v.18 no.1, 2021년, pp.60 -   

Oh, Keonyoung (Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL USA) ,  Park, Jihong (Department of Rehabilitation, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620 Republic of Korea) ,  Jo, Seong Hyeon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea) ,  Hong, Seong-Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea) ,  Kim, Won-Seok (Department of Rehabilitation, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620 Republic of Korea) ,  Paik, Nam-Jong (Department of Rehabilitation, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620 Republic of Korea) ,  Park, Hyung-Soon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daeje)

Abstract AI-Helper 아이콘AI-Helper

BackgroundFor patients with gait impairment due to neurological disorders, body weight-supported treadmill training (BWSTT) has been widely used for gait rehabilitation. On a conventional (passive) treadmill that runs at a constant speed, however, the level of patient engagement and cortical activit...

Keyword

참고문헌 (68)

  1. 1. Liepert J Bauder H Miltner WH Taub E Weiller C Treatment-induced cortical reorganization after stroke in humans Stroke 2000 31 1210 1216 10.1161/01.STR.31.6.1210 10835434 

  2. 2. Skilbeck CE Wade DT Hewer RL Wood VA Recovery after stroke J Neurol Neurosurg Psychiatry 1983 46 5 8 10.1136/jnnp.46.1.5 6842200 

  3. 3. Jørgensen HS Nakayama H Raaschou HO Olsen TS Recovery of walking function in stroke patients: the Copenhagen Stroke Study Arch Phys Med Rehabil 1995 76 27 32 10.1016/S0003-9993(95)80038-7 7811170 

  4. 4. Batchelor FA Mackintosh SF Said CM Hill KD Falls after stroke Int J Stroke 2012 7 482 490 10.1111/j.1747-4949.2012.00796.x 22494388 

  5. 5. Beyaert C Vasa R Frykberg GE Gait post-stroke: pathophysiology and rehabilitation strategies Clin Neurophysiol 2015 45 335 355 10.1016/j.neucli.2015.09.005 

  6. 6. Törnbom K Danielsson A Experiences of treadmill walking with non-immersive virtual reality after stroke or acquired brain injury—a qualitative study PLoS ONE 2018 13 e0209214 10.1371/journal.pone.0209214 30550607 

  7. 7. Duncan PW Sullivan KJ Behrman AL Azen SP Wu SS Nadeau SE Dobkin BH Rose DK Tilson JK Cen S Body-weight—supported treadmill rehabilitation after stroke N Engl J Med 2011 364 2026 2036 10.1056/NEJMoa1010790 21612471 

  8. 8. Bulea TC, Kim J, Damiano DL, Stanley CJ, Park H-S. User-driven control increases cortical activity during treadmill walking: an EEG study. In: Engineering in medicine and biology society (EMBC), 2014 36th annual international conference of the IEEE. IEEE; 2014. pp. 2111–4. 

  9. 9. Yoon J Park H-S Damiano DL A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation J Neuroeng Rehabil 2012 9 62 10.1186/1743-0003-9-62 22929169 

  10. 10. Chua K Lim WS Lim PH Lim CJ Hoo CM Chua KC Chee J Ong WS Liu W Wong CJ An exploratory clinical study on an automated, speed-sensing treadmill prototype with partial body weight support for hemiparetic gait rehabilitation in subacute and chronic stroke patients Front Neurol 2020 11 747 10.3389/fneur.2020.00747 32793109 

  11. 11. Kim J Park H-S Damiano DL An interactive treadmill under a novel control scheme for simulating overground walking by reducing anomalous force IEEE/ASME Trans Mechatron 2015 20 1491 1496 10.1109/TMECH.2014.2341039 

  12. 12. Richards CL Malouin F Lamontagne A McFadyen BJ Dumas F Comeau F Robitaille N-M Fung J Gait training after stroke on a self-paced treadmill with and without virtual environment scenarios: a proof-of-principle study Physiother Can 2018 70 221 230 10.3138/ptc.2016-97 30275647 

  13. 13. Van Dijsseldonk RB De Jong LA Groen BE Vos-Van Der Hulst M Geurts AC Keijsers NL Gait stability training in a virtual environment improves gait and dynamic balance capacity in incomplete spinal cord injury patients Front Neurol 2018 9 963 10.3389/fneur.2018.00963 30524356 

  14. 14. Ray NT Knarr BA Higginson JS Walking speed changes in response to novel user-driven treadmill control J Biomech 2018 78 143 149 10.1016/j.jbiomech.2018.07.035 30078637 

  15. 15. Kim J, Gravunder A, Stanley CJ, Park H-S. Low-cost implementation of a self-paced treadmill by using a commercial depth sensor. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE; 2013. pp. 874–7. 

  16. 16. Canete S Jacobs DA Novel velocity estimation for symmetric and asymmetric self-paced treadmill training J Neuroeng Rehabil 2021 18 1 15 10.1186/s12984-021-00825-3 33397401 

  17. 17. Choi J-S Kang D-W Seo J-W Tack G-R Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill J Biomech 2017 65 154 160 10.1016/j.jbiomech.2017.10.015 29096982 

  18. 18. Sloot L Van der Krogt M Harlaar J Self-paced versus fixed speed treadmill walking Gait Posture 2014 39 478 484 10.1016/j.gaitpost.2013.08.022 24055003 

  19. 19. Wei W Kaiming Y Yu Z Yuyang Q Chenhui W A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes J Biomech 2020 110 109979 10.1016/j.jbiomech.2020.109979 32827775 

  20. 20. Kaur R Chen Z Motl R Hernandez ME Sowers R Predicting multiple sclerosis from gait dynamics using an instrumented treadmill—a machine learning approach IEEE Trans Biomed Eng 2020 10.1109/TBME.2020.3048142 

  21. 21. Takeuchi N Izumi S-I Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity Stroke Res Treat 2013 10.1155/2013/128641 23738231 

  22. 22. Ward NS Functional reorganization of the cerebral motor system after stroke Curr Opin Neurol 2004 17 725 730 10.1097/00019052-200412000-00013 15542982 

  23. 23. Nelles G Jentzen W Jueptner M Müller S Diener H Arm training induced brain plasticity in stroke studied with serial positron emission tomography Neuroimage 2001 13 1146 1154 10.1006/nimg.2001.0757 11352620 

  24. 24. Liepert J Uhde I Gräf S Leidner O Weiller C Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study J Neurol 2001 248 315 321 10.1007/s004150170207 11374097 

  25. 25. La Fougere C Zwergal A Rominger A Förster S Fesl G Dieterich M Brandt T Strupp M Bartenstein P Jahn K Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison Neuroimage 2010 50 1589 1598 10.1016/j.neuroimage.2009.12.060 20034578 

  26. 26. Miyai I Tanabe HC Sase I Eda H Oda I Konishi I Tsunazawa Y Suzuki T Yanagida T Kubota K Cortical mapping of gait in humans: a near-infrared spectroscopic topography study Neuroimage 2001 14 1186 1192 10.1006/nimg.2001.0905 11697950 

  27. 27. Suzuki M Miyai I Ono T Oda I Konishi I Kochiyama T Kubota K Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study Neuroimage 2004 23 1020 1026 10.1016/j.neuroimage.2004.07.002 15528102 

  28. 28. Gwin JT Gramann K Makeig S Ferris DP Electrocortical activity is coupled to gait cycle phase during treadmill walking Neuroimage 2011 54 1289 1296 10.1016/j.neuroimage.2010.08.066 20832484 

  29. 29. Koenraadt KL Roelofsen EG Duysens J Keijsers NL Cortical control of normal gait and precision stepping: an fNIRS study Neuroimage 2014 85 415 422 10.1016/j.neuroimage.2013.04.070 23631980 

  30. 30. Doi T Makizako H Shimada H Park H Tsutsumimoto K Uemura K Suzuki T Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study Aging Clin Exp Res 2013 25 539 544 10.1007/s40520-013-0119-5 23949972 

  31. 31. Pfurtscheller G Da Silva FL Event-related EEG/MEG synchronization and desynchronization: basic principles Clin Neurophysiol 1999 110 1842 1857 10.1016/S1388-2457(99)00141-8 10576479 

  32. 32. Seeber M Scherer R Wagner J Solis-Escalante T Müller-Putz GR EEG beta suppression and low gamma modulation are different elements of human upright walking Front Hum Neurosci 2014 8 485 10.3389/fnhum.2014.00485 25071515 

  33. 33. Bulea TC Kim J Damiano DL Stanley CJ Park H-S Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking Front Hum Neurosci 2015 9 247 10.3389/fnhum.2015.00247 26029077 

  34. 34. Seth AK Barrett AB Barnett L Granger causality analysis in neuroscience and neuroimaging J Neurosci 2015 35 3293 3297 10.1523/JNEUROSCI.4399-14.2015 25716830 

  35. 35. Friston K Moran R Seth AK Analysing connectivity with Granger causality and dynamic causal modelling Curr Opin Neurobiol 2013 23 172 178 10.1016/j.conb.2012.11.010 23265964 

  36. 36. Lau TM Gwin JT Ferris DP Walking reduces sensorimotor network connectivity compared to standing J Neuroeng Rehabil 2014 11 14 10.1186/1743-0003-11-14 24524394 

  37. 37. Holden MK Gill KM Magliozzi MR Nathan J Piehl-Baker L Clinical gait assessment in the neurologically impaired: reliability and meaningfulness Phys Ther 1984 64 35 40 10.1093/ptj/64.1.35 6691052 

  38. 38. Holden MK Gill KM Magliozzi MR Gait assessment for neurologically impaired patients: standards for outcome assessment Phys Ther 1986 66 1530 1539 10.1093/ptj/66.10.1530 3763704 

  39. 39. Berg K Wood-Dauphine S Williams J Gayton D Measuring balance in the elderly: preliminary development of an instrument Physiother Can 1989 41 304 311 10.3138/ptc.41.6.304 

  40. 40. An S Sin H Cho H Lee G The reliability and validity of the falls efficacy scale (Korean version) in stroke patients J Spec Educ Rehabil Sci 2012 51 363 381 

  41. 41. Mullen T, Kothe C, Chi YM, Ojeda A, Kerth T, Makeig S, Cauwenberghs G, Jung T-P. Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE. IEEE; 2013. pp. 2184–7. 

  42. 42. Jung T-P, Humphries C, Lee T-W, Makeig S, McKeown MJ, Iragui V, Sejnowski TJ. Extended ICA removes artifacts from electroencephalographic recordings. In: Advances in neural information processing systems. 1998. pp. 894–900. 

  43. 43. Delorme A Makeig S EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis J Neurosci Methods 2004 134 9 21 10.1016/j.jneumeth.2003.10.009 15102499 

  44. 44. Zhou W, Gotman J. Removal of EMG and ECG artifacts from EEG based on wavelet transform and ICA. In: Engineering in medicine and biology society, 2004 IEMBS'04 26th annual international conference of the IEEE. IEEE; 2004. pp. 392–5. 

  45. 45. Oostenveld R Oostendorp TF Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull Hum Brain Mapp 2002 17 179 192 10.1002/hbm.10061 12391571 

  46. 46. Lancaster JL Woldorff MG Parsons LM Liotti M Freitas CS Rainey L Kochunov PV Nickerson D Mikiten SA Fox PT Automated Talairach atlas labels for functional brain mapping Hum Brain Mapp 2000 10 120 131 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10912591 

  47. 47. Mihara M Miyai I Hatakenaka M Kubota K Sakoda S Role of the prefrontal cortex in human balance control Neuroimage 2008 43 329 336 10.1016/j.neuroimage.2008.07.029 18718542 

  48. 48. Miller EK Cohen JD An integrative theory of prefrontal cortex function Annu Rev Neurosci 2001 24 167 202 10.1146/annurev.neuro.24.1.167 11283309 

  49. 49. Goldberg G Supplementary motor area structure and function: review and hypotheses Behav Brain Sci 1985 8 567 588 10.1017/S0140525X00045167 

  50. 50. Dick J Benecke R Rothwell J Day B Marsden C Simple and complex movements in a patient with infarction of the right supplementary motor area Mov Disord 1986 1 255 266 10.1002/mds.870010405 3504248 

  51. 51. Lee K-M Chang K-H Roh J-K Subregions within the supplementary motor area activated at different stages of movement preparation and execution Neuroimage 1999 9 117 123 10.1006/nimg.1998.0393 9918733 

  52. 52. Jacobs JV Lou J-S Kraakevik JA Horak FB The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson's disease Neuroscience 2009 164 877 885 10.1016/j.neuroscience.2009.08.002 19665521 

  53. 53. Kheradmand A Lasker A Zee DS Transcranial magnetic stimulation (TMS) of the supramarginal gyrus: a window to perception of upright Cereb Cortex 2015 25 765 771 10.1093/cercor/bht267 24084127 

  54. 54. Andres M Pelgrims B Olivier E Vannuscorps G The left supramarginal gyrus contributes to finger positioning for object use: a neuronavigated transcranial magnetic stimulation study Eur J Neurosci 2017 46 2835 2843 10.1111/ejn.13763 29094500 

  55. 55. Richer F Martinez M Robert M Bouvier G Saint-Hilaire J-M Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial regions Exp Brain Res 1993 93 173 176 10.1007/BF00227792 8467887 

  56. 56. Kuo C-C Luu P Morgan KK Dow M Davey C Song J Malony AD Tucker DM Localizing movement-related primary sensorimotor cortices with multi-band EEG frequency changes and functional MRI PLoS ONE 2014 9 e112103 10.1371/journal.pone.0112103 25375957 

  57. 57. Pfurtscheller G Central beta rhythm during sensorimotor activities in man Electroencephalogr Clin Neurophysiol 1981 51 253 264 10.1016/0013-4694(81)90139-5 6163614 

  58. 58. Chung JW Ofori E Misra G Hess CW Vaillancourt DE Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance Neuroimage 2017 144 164 173 10.1016/j.neuroimage.2016.10.008 27746389 

  59. 59. Brinkman L Stolk A Marshall TR Esterer S Sharp P Dijkerman HC de Lange FP Toni I Independent causal contributions of alpha-and beta-band oscillations during movement selection J Neurosci 2016 36 8726 8733 10.1523/JNEUROSCI.0868-16.2016 27535917 

  60. 60. Brinkman L Stolk A Dijkerman HC de Lange FP Toni I Distinct roles for alpha-and beta-band oscillations during mental simulation of goal-directed actions J Neurosci 2014 34 14783 14792 10.1523/JNEUROSCI.2039-14.2014 25355230 

  61. 61. Qian Y Yang K Zhu Y Wang W Wan C Local dynamic stability of self-paced treadmill walking versus fixed-speed treadmill walking J Biomech Eng 2020 10.1115/1.4045595 

  62. 62. Donelan JM Kram R Kuo AD Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking J Exp Biol 2002 205 3717 3727 12409498 

  63. 63. Donelan JM Kram R Kuo AD Simultaneous positive and negative external mechanical work in human walking J Biomech 2002 35 117 124 10.1016/S0021-9290(01)00169-5 11747890 

  64. 64. Maulden SA Gassaway J Horn SD Smout RJ DeJong G Timing of initiation of rehabilitation after stroke Arch Phys Med Rehabil 2005 86 34 40 10.1016/j.apmr.2005.08.119 

  65. 65. Zehr EP Duysens J Regulation of arm and leg movement during human locomotion Neuroscientist 2004 10 347 361 10.1177/1073858404264680 15271262 

  66. 66. Marder E Calabrese RL Principles of rhythmic motor pattern generation Physiol Rev 1996 76 687 717 10.1152/physrev.1996.76.3.687 8757786 

  67. 67. Dimitrijevic MR Gerasimenko Y Pinter MM Evidence for a spinal central pattern generator in humans Ann N Y Acad Sci 1998 860 360 376 10.1111/j.1749-6632.1998.tb09062.x 9928325 

  68. 68. Oh K Stanley CJ Damiano DL Kim J Yoon J Park H-S Biomechanical evaluation of virtual reality-based turning on a self-paced linear treadmill Gait Posture 2018 65 157 162 10.1016/j.gaitpost.2018.07.175 30510358 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로