$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Quantitative analysis of piano performance proficiency focusing on difference between hands 원문보기

PLoS ONE, v.16 no.5, 2021년, pp.e0250299 -   

Kim, Sarah (Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea) ,  Park, Jeong Mi (Department of Transdisciplinary Studies, Seoul National University, Seoul, South Korea) ,  Rhyu, Seungyeon (Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea) ,  Nam, Juhan (Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) ,  Lee, Kyogu (Music and Audio Research Group, Department of Intelligence and Information, Seoul National University, Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Quantitative evaluation of piano performance is of interests in many fields, including music education and computational performance rendering. Previous studies utilized features extracted from audio or musical instrument digital interface (MIDI) files but did not address the difference between hand...

참고문헌 (99)

  1. 1 Palmer C. Music performance . Annu Rev Psychol . 1997 ; 48 ( 1 ): 115 – 38 . 10.1146/annurev.psych.48.1.115 . 9046557 

  2. 2 Hodges DA . Handbook of music psychology . Lawrence, KS : National Association for Music Therapy ; 1980 . 

  3. 3 George WE . Measurement and evaluation of musical behaviors . In: Hodges DE , editor. Handbook of music psychology . Lawrence, KS : National Association for Music Therapy ; 1980 . p. 291 – 392 . 

  4. 4 Stanley M , Brooker R , Gilbert R . Examiner perceptions of using criteria in music performance assessment . Res Stud Music Educ . 2002 ; 18 ( 1 ): 46 – 56 . 10.1177/1321103X020180010601 . 

  5. 5 Thompson SAM , Williamon A . Evaluating evaluation: musical performance assessment as a research tool . Music Percept . 2003 ; 21 ( 1 ): 21 – 41 . 10.1525/mp.2003.21.1.21 . 

  6. 6 McPherson GE , Schubert E . Measuring performance enhancement in music . In: Williamon A , editor. Musical excellence: strategies and techniques to enhance performance . Oxford, UK : Oxford University Press 2004 . p. 61 – 82 . 

  7. 7 Understanding Wesolowski B. and developing rubrics for music performance assessment . Music Educ J . 2012 ; 98 ( 3 ): 36 – 42 . 10.1177/0027432111432524 . 

  8. 8 Wesolowski B , Wind S , Engelhard G . Examining rater precision in music performance assessment: an analysis of rating scale structure using the multifaceted rasch partial credit model . Music Percept . 2016 ; 33 ( 5 ): 662 – 78 . 10.1525/mp.2016.33.5.662 . 

  9. 9 Pati A , Gururani S , Lerch A . Assessment of student music performances using deep neural networks . Appl Sci . 2018 ; 8 ( 4 ): 507 . 10.3390/app8040507 . 

  10. 10 Giraldo S , Waddell G , Nou I , Ortega A , Mayor O , Perez A , et al . Automatic assessment of tone quality in violin music performance . Front Psychol . 2019 ; 10 : 334 . 10.3389/fpsyg.2019.00334 ; PMCID: PMC6427949. 30930804 

  11. 11 Eremenko V , Morsi A , Narang J , Serra X . Performance assessment technologies for the support of musical instrument learning . In: Proceedings of the 12th International conference on computer supported education (CSEDU) ; 2020 5 2–4 ; Windsor, ON : CSME ; 2020. p. 629 – 40 . 10.5220/0009817006290640 . 

  12. 12 Schedl M , Gómez E , Urbano J . Music information retrieval: recent developments and application . Found Trends Inf Retr . 2014 ; 8 ( 2–3 ): 127 – 261 . https://dor.org/10.1561/1500000042 . 

  13. 13 Dittmar C , Cano E , Abeßer J , Grollmisch S . Music information retrieval meets music education . In: Müller M , Goto M , Schedl M , editor. Multimodal music processing . Dagstuhl Publishing Follow-Ups. vol. 3. Schloss Dagstuhl-Leibniz-Zentrum für Informatik . Saarbrucken, Germany . 2012 ; 3 : 95 – 120 . 10.4230/DFU.Vol3.11041.95 . 

  14. 14 Romani PO , Parra RH , Dabiri D , Tokuda H , Hariya W , Oishi K , et al . A real-time system for measuring sound goodness in instrumental sounds . In: Proceedings of the 138th audio engineering society convention ; 2015 5 7–10 ; Warsaw, Poland : Audio Engineering Society ; 2015. p. 1106 – 11 . 

  15. 15 Vidwans A , Gururani S , Wu CW , Subramanian V , Swaminathan RV , Lerch A . Objective descriptors for the assessment of student music performances . In: Proceedings of the AES International Conference on Semantic Audio ; 2017 6 22–24 ; Erlangen, Germany : Audio Engineering Society ; 2017. p. 1 – 8 . 

  16. 16 Wu CW , Gururani S , Laguna C , Pati A , Vidwans A , Lerch A . Towards the objective assessment of music performances . In: Proceedings of the 14th International conference on music perception and cognition ; 2016 7 5–9 ; San Francisco, CA, US : ICMPC ; 2016. p. 99 – 103 . 

  17. 17 Morita S , Emura N , Miura M , Akinaga S , Yanagida M . Evaluation of a scale performance on the piano using spline and regression models . In: Williamon A , Pretty S , Buck R , editors. International symposium on performance science ; 2009 12 15–18 ; Auckland, NZ : ISPS ; 2009. p. 77 – 82 . 

  18. 18 Schramm R , Nunes HS , Jung CR . Automatic Solfège Assessment . In: Proceeding of the 16th International society for music information retrieval ; 2015 10 26–30 ; Malaga, Spain : ISMIR ; 2015. p. 183 – 9 . 

  19. 19 Knight T , Upham F , Fujinaga I . The potential for automatic assessment of trumpet tone quality . In: Proceeding of the 12th International society for music information retrieval ; 2011 10 24–28 ; Miami, US : ISMIR ; 2011. p. 573 – 8 . 

  20. 20 Abeßer J , Hasselhorn J , Dittmar C , Lehmann A , Grollmisch S . Automatic quality assessment of vocal and instrumental performances of ninth-grade and tenth-grade pupils . In: Proceedings of the 10th International symposium on computer music multidisciplinary research ; 2013 10 15–18 ; Marseille, France : CMMR ; 2013. p. 975 – 88 . 10.1186/1478-811X-11-56 

  21. 21 Giraldo S , Ramírez R , Waddell G , Williamon A . A real-time feedback learning tool to visualize sound quality in violin performances . In: Ramirez R , Conklin D , Iñesta JM , editors. Proceedings of the 10th International workshop on machine learning and music ; 2017 10 6 ; Barcelona, Spain : MML ; 2017. p. 19 – 24 . 

  22. 22 Giraldo S , Ramírez R , Waddell G , Williamon A . Computational modelling of timbre dimensions for automatic violin tone quality assessment . In: Thoret E , Goodchild M , McAdams S , editors. Timbre is a many-splendored thing; 2018 7 4–7 ; Montreal, Canada : McGill University ; 2018. p. 57 – 8 . 

  23. 23 Stables R , Hockman J , Southall C . Automatic drum transcription using bi-directional recurrent neural networks . In: Proceeding of the 17th International society for music information retrieval ; 2016 8 7–11 ; New York, USA : ISMIR ; 2016. p. 591 – 7 . 

  24. 24 Wu CW , Lerch A . Learned features for the assessment of percussive music performances . In: 2018 IEEE 12th International conference on semantic computing (ICSC) ; 2018 Jan 31-Feb 2; Laguna Hills, US : IEEE ; 2018. p. 93 – 9 . 10.1109/ICSC.2018.00022 . 

  25. 25 Nakano T , Goto M , Hiraga Y . An automatic singing skill evaluation method for unknown melodies using pitch interval accuracy and vibrato features . In: 9th International conference on spoken language processing (ICSLP ); 2006 9 17–21 ; Pittsburgh, US : IEEE ; 2006. p. 1706 – 9 . 

  26. 26 Akinaga S , Miura M , Emura N , Yanagida M . Toward realizing automatic evaluation of playing scales on the piano . In: Proceedings of the 9th International conference on music perception and cognition (ICMPC) ; 2006 8 22–26 ; Bologna, Italy : Citeseer ; 2006. p. 1843 – 7 . 

  27. 27 Kato H , Miura M . Use of eigenperformances to analyze proficiency of piano performance. Acoust Sci Technol . 2015 ; 36 ( 4 ): 336 – 9 . 10.1250/ast.36.336 . 

  28. 28 Bernays M , Traube C . Investigating pianists’ individuality in the performance of five timbral nuances through patterns of articulation, touch, dynamics, and pedaling . Front Psychol . 2014 ; 5 : 157 . 10.3389/fpsyg.2014.00157 ; PMCID: PMC3941302. 24624099 

  29. 29 Gát J. The technique of piano playing. 3rd ed. Budapest : Collet’s Holding ; 1965 . 

  30. 30 Musafia J. The art of fingering in piano playing . New York, NY : MCA Music ; 1971 . 

  31. 31 Burnsed V , Humphries S . The effects of reversing the roles of the hands on the development of piano performance skill: a preliminary investigation . Psychol Music . 1998 ; 26 ( 1 ): 89 – 96 . 10.1177/0305735698261008 . 

  32. 32 Chang CC . Fundamentals of piano practice . 3rd ed. Tampa, FL : Citeseer ; 2016 . 

  33. 33 Goebl W. Melody lead in piano performance: expressive device or artifact? J Acoust Soc Am . 2001 ; 110 ( 1 ): 563 – 72 . 10.1121/1.1376133 . 11508980 

  34. 34 Hartmann A. Untersuchungen über das metrische Verhalten in musikalischen Interpretations varianten [Investigation about the metric relationships in musical interpretation variants] . Arch Gesamte Psychol . 1932 ; 84 : 103 – 92 . 

  35. 35 Vernon LN . Synchronization of chords in artistic piano music . In: Seashore CE , editor. Objective analysis of musical performance . Iowa, IA : University of Iowa Press ; 1937 . p. 306 – 45 . 

  36. 36 Palmer C. Mapping musical thought to musical performance. J Exp Psychol Hum Percept Perform . 1989 ; 15 ( 2 ): 331 – 46 . 10.1037//0096-1523.15.2.331 . 2525602 

  37. 37 Palmer C. On the assignment of structure in music performance . Music Percept . 1996 ; 14 ( 1 ) 23 – 56 . 10.2307/40285708 . 

  38. 38 Repp BH . The art of inaccuracy: why pianists’ errors are difficult to hear . Music Percept . 1996 ; 14 ( 2 ): 161 – 83 . 10.2307/40285716 . 

  39. 39 Neuhaus H , Des Klavierspiels DK . Translated by Leibovitch KA . The art of piano playing . London, UK : Dover Publications ; 1973 . 

  40. 40 Ericsson KA , Lehmann AC . Expert and exceptional performance: evidence of maximal adaptation to task constraints . Annu Rev Psychol . 1996 ; 47 ( 1 ): 273 – 305 . 10.1146/annurev.psych.47.1.273 . 15012483 

  41. 41 Goebl W . Movement and touch in piano performance . In: Müller B , Wolf S , editors. Handbook of human motion . Cham : Springer International Publishing ; 2017 . p. 1 – 18 . 10.1007/978-3-319-30808-1 . 

  42. 42 Goebl W , Palmer C . Temporal control and hand movement efficiency in skilled music performance . PLoS One . 2013 ; 8 ( 1 ): e50901 . 10.1371/journal.pone.0050901 23300946 

  43. 43 Furuya S , Altenmüller E . Flexibility of movement organization in piano performance . Front Hum Neurosci . 2013 ; 7 : 173 . 10.3389/fnhum.2013.00173 ; PMCID: PMC3712142. 23882199 

  44. 44 Johnson D , Damian D , Tzanetakis G . Detecting hand posture in piano playing using depth data . Comput Music J. 2020 ; 43 ( 1 ): 59 – 78 . 10.1162/comj_a_00500 . 

  45. 45 Dalla Bella S , Palmer C . Rate effects on timing, key velocity, and finger kinematics in piano performance . PLoS One . 2011 ; 6 ( 6 ): e20518 . 10.1371/journal.pone.0020518 21731615 

  46. 46 Hadjakos A , Lefebvre-Albaret F , Toulouse I . Three methods for pianist hand assignment . In: Proceedings of the 6th sound and music computing conference (SMC) ; 2009 7 23–25 ; Porto, Portugal : Citeseer ; 2009. p. 321 – 6 . 

  47. 47 Oka A , Hashimoto M . Marker-less piano fingering recognition using sequential depth images . In: The 19th Korea-Japan joint workshop on frontiers of computer vision (FCV) ; 2013 Jan 30-Feb 1; Incheon, South Korea : IEEE ; 2013. p. 1 – 4 . 10.1109/FCV.2013.6485449 . 

  48. 48 Van Vugt FT , Jabusch HC , Altenmüller E . Individuality that is unheard of: systematic temporal deviations in scale playing leave an inaudible pianistic fingerprint . Front Psychol . 2013 ; 4 : 134 . 10.3389/fpsyg.2013.00134 ; PMCID: PMC3604639. 23519688 

  49. 49 Van Vugt FT , Furuya S , Vauth H , Jabusch HC , Altenmüller. Playing beautifully when you have to be fast: spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi . Exp Brain Res . 2014 ; 232 ( 11 ): 3555 – 67 . 10.1007/s00221-014-4036-4 . 25059908 

  50. 50 Hanon CL . The virtuoso pianist in sixty exercises for the acquirement of agility, independence, strength and perfect evenness in the fingers as well as suppleness of the wrist: translated from the French by Th. Baker . New York, NY : G. Schirmer, Inc ; 1900 . 

  51. 51 Lee J , Doosti B , Gu Y , Cartledge D , Crandall D , Raphael C . Observing pianist accuracy and form with computer vision . In: 2019 IEEE winter conference on applications of computer vision (WACA) ; 2019 1 7–11 ; Waikoloa, US : IEEE ; 2019. p. 1505 – 13 . 10.1109/WACV.2019.00165 . 

  52. 52 Lipke-Perry T , Dutto DJ , Levy M . The piano keyboard as task constraint: timing patterns of pianists’ scales persist across instruments . Music Sci . 2019 ; 2 : 1 – 14 . 10.1177/2059204319870733 . 

  53. 53 Jabusch HC , Vauth H , Altenmüller E . Quantification of focal dystonia in pianists using scale analysis . Mov Disord . 2004 ; 19 ( 2 ): 171 – 80 . 10.1002/mds.10671 . 14978672 

  54. 54 Jabusch HC . Movement analysis in pianists. Music, motor control and the brain . Oxford, UK: Oxford University Press ; 2006 ; p. 91 – 108 . 10.1093/acprof:oso/9780199298723.001.0001 . 

  55. 55 Kopiez R , Jabusch HC , Galley N , Homann JC , Lehmann AC , Altenmüller E . No disadvantage for left-handed musicians: The relationship between handedness, perceived constraints and performance-related skills in string players and pianists . Psychol Music . 2011 ; 40 ( 3 ): 357 – 84 . 10.1177/0305735610394708 . 

  56. 56 Rink J. Musical performance: a guide to understanding . Cambridge, MA : Cambridge University Press ; 2002 . p. 35 – 58 . 10.1017/CBO9780511811739.004 . 

  57. 57 Jeong D , Kwon T , Kim Y , Nam J . Score and performance features for rendering expressive music performances . In: Music encoding conference ; 2019 May 29-Jun 1; Vienna, Austria : Music Encoding Initiative ; 2019. p. 1 – 6 . 

  58. 58 Kim TH , Fukayama S , Nishimoto T , Sagayama S . Statistical approach to automatic expressive rendition of polyphonic piano music . In: Kirke A , Miranda ER , editors. Guide to computing for expressive music performance . London, UK : Springer ; 2013 . p. 145 – 79 . 10.1007/978-1-4471-4123-5_6 . 

  59. 59 Panda R , Malheiro R , Paiva RP . Novel audio features for music emotion recognition . IEEE Trans Affect Comput . 2020 ; 11 ( 4 ): 614 – 26 . 10.1109/TAFFC.2018.2820691 . 

  60. 60 Friberg A , Bresin R , Sundberg J . Overview of the KTH rule system for musical performance . Adv Cogn Psychol . 2006 ; 2 ( 2–3 ): 145 – 61 . 10.2478/v10053-008-0052-x . 

  61. 61 Loehr JD , Palmer C . Temporal coordination between performing musicians . Q J Exp Psychol (Hove) . 2011 ; 64 ( 11 ): 2153 – 67 . 10.1080/17470218.2011.603427 . 21929475 

  62. 62 Nakamura E. , Yoshii K. , Katayose H. Performance error detection and post-processing for fast and accurate symbolic music alignment . In: Proceedings of the 18th International society for music information retrieval ; 2017 10 23–27 ; Suzhou, China : ISMIR ; 2017. p. 347 – 53 . 

  63. 63 McIntyre RS , Soczynska JK , Cha DS , Woldeyohannes HO , Dale RS , Alsuwaidan MT , et al . The prevalence and illness characteristics of DSM-5-defined “mixed feature specifier” in adults with major depressive disorder and bipolar disorder: results from the International mood disorders collaborative project . J Affect Disord . 2015 ; 172 : 259 – 64 . 10.1016/j.jad.2014.09.026 . 25451425 

  64. 64 Cohen J. Statistical power analysis for the behavioral sciences . 2nd ed. Hillsdale, NJ : Department of Psychology, Lawrence Erlbaum Associates Inc. ; 1988 . 10.4324/9780203771587 . 

  65. 65 Vapnik VN . An overview of statistical learning theory . IEEE Trans Neural Netw . 1999 ; 10 ( 5 ): 988 – 99 . 10.1109/72.788640 . 18252602 

  66. 66 Pedregosa F , Varoquaux G , Gramfort A , Michel V , Thirion B , Grisel O , et al . Scikit-learn: machine learning in python . J Mach Learn Res . 2011 ; 12 : 2825 – 30 . 

  67. 67 Chang CC , Lin CJ . LIBSVM: A library for support vector machines . ACM Trans Intell Syst Technol. (TIST). 2011 ; 2 ( 3 ): 1 – 27 . 10.1145/1961189.1961199 . 

  68. 68 Repp BH . Patterns of note onset asynchronies in expressive piano performance . J Acoust Soc Am . 1996 ; 100 ( 6 ): 3917 – 32 . 10.1121/1.417245 8969489 

  69. 69 Parncutt R , Sloboda JA , Clarke EF . Interdependence of right and left hands in sight-read, written, and rehearsed fingerings of parallel melodic piano music . Aust J Psychol . 1999 ; 51 ( 3 ): 204 – 10 . 10.1080/00049539908255357 . 

  70. 70 Zatorre RJ , Chen JL , Penhune VB . When the brain plays music: auditory-motor interactions in music perception and production . Nat Rev Neurosci . 2007 ; 8 ( 7 ): 547 – 58 . 10.1038/nrn2152 17585307 

  71. 71 Repp BH . Acoustics, perception, and production of legato articulation on a digital piano . J Acoust Soc Am . 1995 ; 97 ( 6 ): 3862 – 74 . 10.1121/1.413065 . 7790662 

  72. 72 MacKenzie CL , Van Eerd DL . Rhythmic precision in the performance of piano scales: Motor psychophysics and moto programming . In: Jeannerod M , editor. Attention and performance XIII. motor representation and control . Hillsdale, NJ : Lawrence Erlbaum Associates, Inc. ; 1990 . p. 375 – 408 . 

  73. 73 Shaffer LH , Clarke EF , Todd NP . Metre and rhythm in piano playing . Cognition . 1985 ; 20 ( 1 ): 61 – 77 . 10.1016/0010-0277(85)90005-8 4017521 

  74. 74 Furuya S , Goda T , Katayose H , Miwa H , Nagata N . Distinct inter-joint coordination during fast alternate keystrokes in pianists with superior skill . Front Hum Nneurosci . 2011 ; 5 : 50 . 10.3389/fnhum.2011.00050 ; PMCID: PMC3107480. 21660290 

  75. 75 Engel KC , Flanders M , Soechting JF . Anticipatory and sequential moto control in piano playing . Exp Brain Res . 1997 ; 113 ( 2 ): 189 – 99 . 10.1007/BF02450317 . 9063705 

  76. 76 Jabusch HC , Alpers H , Kopiez R , Vauth H , Altenmüller E . The influence on practice on the development of moto skills in pianists: a longitudinal study in a selected moto task . Human Movement Science . 2009 ; 28 ( 1 ): 74 – 84 . 10.1016/j.humov.2008.08.001 . 18845349 

  77. 77 Halsband U , Binkofski F , Camp M . The role of the perception of rhythmic grouping in musical performance: Evidence from moto-skill development in piano playing . Music Percept . 1994 ; 11 ( 3 ): 265 – 88 . 10.2307/40285623 . 

  78. 78 Furuya S , Nakamura A , Nagata N . Transfer of piano practice in fast performance of skilled finger movements . BMC Neurosci. 2013 ; 14 ( 133 ): 1 – 8 . 10.1186/1471-2202-14-133 . PMCID: PMC4228459. 23280045 

  79. 79 Tominaga K , Lee A , Altenmüller E , Miyazaki F , Furuya S . Kinematic origins of moto inconsistency in expert pianists. PLoS One . 2016 ; 11 ( 8 ): e0161324 . 10.1371/journal.pone.0161324 ; PMCID: PMC4990412. 27537686 

  80. 80 Furuya S , Kinoshita H . Organization of the upper limb movement for piano key-depression differs between expert pianists and novice players . Exp Brain Res . 2008 ; 185 ( 4 ): 581 – 93 . 10.1007/s00221-007-1184-9 . 17989970 

  81. 81 Furuya S , Osu R , Kinoshita H . Effective utilization of gravity during arm downswing in keystrokes by expert pianists . Neuroscience . 2009 ; 164 ( 2 ): 822 – 31 . 10.1016/j.neuroscience.2009.08.024 . 19698766 

  82. 82 Furuya S , Nakamura A , Nagata N . Extraction of practice-dependent and practice-independent finger movement patterns . Neurosci Lett . 2014 ; 577 : 38 – 44 . 10.1016/j.neulet.2014.06.012 . 24933539 

  83. 83 Oku T , Furuya S . Skilful force control in expert pianists . Exp Brain Res . 2017 ; 235 ( 5 ): 1603 – 15 . 10.1007/s00221-017-4926-3 28260157 

  84. 84 Verdugo F , Pelletier J , Michaud B , Traube C , Begon M . Effect of trunk motion, touch, and articulation on upper-limb velocities and on joint contribution to endpoint velocity during the production of loud piano tones . Front Psychol. 2020 ; 11 : 1159 . 10.3389/fpsyg.2020.01159 ; PMCID: PMC7298114. 32587549 

  85. 85 Degrave V , Verdugo F , Pelletier J , Traube C , Begon M . Time history of upper-limb muscle activity during isolated piano keystrokes . J Electromyography and Kinesiology . 2020 ; 54 : 102459 . 10.1016/j.jelekin.2020.102459 . 32889353 

  86. 86 Furuya S , Altenmüller E , Katayose H , Kinoshita H . Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists . BMC Neurosci . 2010 ; 1 ( 11 ): 82 . 10.1186/1471-2202-11-82 ; PMCID. PMC2919541. 20630085 

  87. 87 Edel T. Develop your left hand etudes, studies and repertoire for piano left-hand . Clavier . Instrumentalist Publ Co. 200 Northfield RD, Northfield, IL., US. 1986 ; 25 ( 8 ): 12 – 7 . 

  88. 88 Kuehn J. Beyond aimless practice reviewing good practice-habits . Clavier . Instrumentalist Publ Co. 200 Northfield RD, Northfield, IL., US. 1996 ; 35 ( 5 ): 41 – 2 . 

  89. 89 Wiley A. Playing better by studying literature for the left-hand. A guide for pianists using selected examples . Clavier . Instrumentalist Publ Co. 200 Northfield RD, Northfield, IL., US. 1996 ; 35 ( 1 ): 12 – 5 . 

  90. 90 Goebl W. Skilled piano performance: melody lead caused by dynamic differentiation . In: Woods C , Luck G , Brochard R , Seddon F , Sloboda JA , editors. Proceedings of the 6th International conference on music perception and cognition (ICMPC); 2000 8 5–10 ; Keele, UK : Keele University Department of Psychology ; 2000. p. 1165 – 76 . 

  91. 91 Repp BH . The dynamics of expressive piano performance: Schumann’s “Träumerei” revisited . J Acoust Soc Am . 1996 ; 100 ( 1 ): 641 – 50 . 10.1121/1.415889 8675852 

  92. 92 Rubin-Rabson G. Studies in the psychology of memorizing piano music. I. A comparison of the unilateral and coordinated approaches . J Educ Psychol . 1939 ; 30 ( 5 ): 321 – 45 . 10.1037/h0062176 . 

  93. 93 Weinreich G. Coupled piano strings . J Acoust Soc Am . 1977 ; 62 ( 6 ): 1474 – 84 . 10.1121/1.381677 . 

  94. 94 Furuya S , Kinoshita H . Roles of proximal-to-distal sequential organization of the upper limb segments in striking the keys by expert pianists . Neurosci Lett . 2007 ; 421 ( 3 ): 264 – 9 . 10.1016/j.neulet.2007.05.051 . 17574744 

  95. 95 Furuya S , Kinoshita H . Expertise-dependent modulation of muscular and non-muscular torques in multi-joint arm movements during piano keystroke . Neuroscience . 2008 ; 156 ( 2 ): 390 – 402 . 10.1016/j.neuroscience.2008.07.028 . 18721863 

  96. 96 Wagner C. What demands does playing an instrument make on the hand? Handchir Mikrochi Plast Chir. Organ der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der Peripheren Nerven und Gefasse . (Article in German) 1987 ; 19 ( 1 ): 23 – 32 . . 3557203 

  97. 97 Parlitz D , Peschel T , Altenmüller E . Assessment of dynamic finger forces in pianists: effects of training and expertise . J Biomech . 1998 ; 31 ( 11 ): 1063 – 7 . 10.1016/s0021-9290(98)00113-4 . 9880064 

  98. 98 Furuya S , Oku T , Miyazaki F , Kinoshita H . Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians . Sci Rep . 2015 ; 5 : 15750 . 10.1038/srep15750 ; PMCID: PMC4621510. 26502770 

  99. 99 Furuya S , Soechting JF . Speed invariance of independent control of finger movements in pianists . J Neurophysiol . 2012 ; 108 ( 7 ): 2060 – 8 . 10.1152/jn.00378.2012 ; PMCID: PMC3545004. 22815403 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로