$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Distribution of Polyphenolic and Isoprenoid Compounds and Biological Activity Differences between in the Fruit Skin + Pulp, Seeds, and Leaves of New Biotypes of Elaeagnus multiflora Thunb 원문보기

Antioxidants, v.10 no.6, 2021년, pp.849 -   

Lachowicz-Wiśniewska, Sabina (Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Science, Chełmoń) ,  Kapusta, Ireneusz (skiego 37, 51-630 Wroclaw, Poland) ,  Stinco, Carla M. (zygmunt.gil@upwr.edu.pl) ,  Meléndez-Martínez, Antonio J. (Department of Food Technology and Human Nutrition, Faculty of Biology and Agriculture, Rzeszow University, Zelwerowicza 4, 35-601 Rzeszow, Poland) ,  Bieniek, Anna (ikapustai@ur.edu.pl) ,  Ochmian, Ireneusz (Food Colour and Quality Laboratory, Area of Nutrition and Food Science, Universidad de Sevilla, 41012 Seville, Spain) ,  Gil, Zygmunt (cstinco@us.es (C.M.S.))

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study was to determine the distribution of polyphenolic and isoprenoid compounds and organic acids in the fruit skin + pulp, seeds, and leaves of six new biotypes of Elaeagnus multiflora Thunb., as well as their in vitro biological potency. The polyphenols and isoprenoids were de...

주제어

참고문헌 (52)

  1. 1. Bieniek A. Piłat B. Szałkiewicz M. Markuszewski B. Gojło E. Evaluation of yield, morphology and Quality of fruits of cherry silverberry ( Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland Pol. J. Nat. Sci. 2017 32 61 70 

  2. 2. Meléndez-Martínez A.J. An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease Mol. Nutr. Food Res. 2019 63 e1801045 10.1002/mnfr.201801045 31189216 

  3. 3. Lee J.H. Seo W.T. Cho K.M. Determination of phytochemical contents and biological activities from the fruits of Elaeagnus multiflora J. Food Sci. Nutr. 2011 16 29 36 10.3746/jfn.2011.16.1.029 

  4. 4. Lee M.S. Lee Y.S. Park O.J. Cherry silverberry ( Elaeagnus multiflora ) extracts exert anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 clon cancer cells Food Sci. Biotechnol. 2010 19 1673 1677 10.1007/s10068-010-0237-1 

  5. 5. Lachowicz S. Bieniek A. Gil Z. Bielska N. Markuszewski B. Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes ( Elaeagnus multiflora Thunb.) Eur. Food Res. Technol. 2019 245 1997 2005 10.1007/s00217-019-03317-w 

  6. 6. Ahmadiani A. Hosseiny J. Semnanian S. Javan M. Saeedi F. Kamalinejad M. Saremi S. Antinociceptive and antiinflammatory effects of Elaeagnus angustifolia fruit extract J. Ethnopharmacol. 2000 72 287 292 10.1016/S0378-8741(00)00222-1 10967484 

  7. 7. Lachowicz S. Kapusta I. Świeca M. Stinco C.M. Meléndez-Martínez A.J. Bieniek A. In Vitro Biological Activities of Fruits and Leaves of Elaeagnus multiflora Thunb. and Their Isoprenoids and Polyphenolics Profile Antioxidants 2020 9 436 10.3390/antiox9050436 

  8. 8. Dong J.Z. Wang S.H. Zhu L. Wang Y. Analysis on the main active components of Lycium barbarum fruits and related environmental factors J. Med. Plants Res. 2012 6 2276 2283 

  9. 9. Meléndez-Martínez A.J. Böhm V. Borge G.I.A. Cano M.P. Fikselová M. Gruskiene R. O’Brien N.M. Carotenoids: Considerations for Their Use in Functional Foods, Nutraceuticals, Nutricosmetics, Supplements, Botanicals, and Novel Foods in the Context of Sustainability, Circular Economy, and Climate Change Annu. Rev. Food Sci. Technol. 2021 12 433 460 10.1146/annurev-food-062220-013218 33467905 

  10. 10. Grosso G. Godos J. Galvano F. Giovannucci E.L. Coffee, caffeine, and health outcomes: An umbrella review Annu. Rev. Nutr. 2017 37 131 156 10.1146/annurev-nutr-071816-064941 28826374 

  11. 11. Kapusta I. Cebulak T. Oszmiański J. Characterization of polish wines produced from the interspecific hybrid grapes grown in south-east Poland Eur. Food Res. Technol. 2018 244 441 455 10.1007/s00217-017-2972-5 

  12. 12. Stinco C.M. Fernández-Vázquez R. Escudero-Gilete M.L. Heredia F.J. Meléndez-Martínez A.J. Vicario I.M. Effect of orange juice’s processing on the color, particle size, and bioaccessibility of carotenoids J. Agric. Food Chem. 2012 60 1447 1455 10.1021/jf2043949 22250727 

  13. 13. Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay Free Radic. Biol. Med. 1999 26 1231 1237 10.1016/S0891-5849(98)00315-3 10381194 

  14. 14. Benzie I.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay Anal. Biochem. 1996 239 70 76 10.1006/abio.1996.0292 8660627 

  15. 15. Podsedek A. Majewska I. Redzynia M. Sosnowska D. Koziołkiewicz M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits J. Agric. Food Chem. 2014 62 4610 4617 10.1021/jf5008264 24785184 

  16. 16. Nickavar B. Yousefian N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants J. Verbrauch. Lebensm. 2011 6 191 195 10.1007/s00003-010-0627-6 

  17. 17. Cho K.M. Joo O.S. Quality and antioxidant charactistics of Elaeagnus multiflora wine through the thermal processing of juice Korean J. Food Preserv. 2014 21 206 214 10.11002/kjfp.2014.21.2.206 

  18. 18. Kolniak-Ostek J. Chemical composition and antioxidant capacity of different anatomical parts of pear ( Pyrus communis L.) Food Chem. 2016 203 491 497 10.1016/j.foodchem.2016.02.103 26948642 

  19. 19. Mikulic-Petkovsek M. Schmitzer V. Slatnar A. Stampar F. Veberic R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species J. Food Sci. 2012 77 C1064 C1070 10.1111/j.1750-3841.2012.02896.x 22924969 

  20. 20. Kolniak-Ostek J. Oszmiański J. Characterization of phenolic compounds in different anatomical pear ( Pyrus communis L.) parts by ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) Int. J. Mass Spectrom. 2015 392 154 163 10.1016/j.ijms.2015.10.004 

  21. 21. Figueirinha A. Paranhos A. Pérez-Alonso J.J. Santos-Buelga C. Batista M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols Food Chem. 2008 110 718 728 10.1016/j.foodchem.2008.02.045 

  22. 22. Ek S. Kartimo H. Mattila S. Tolonen A. Characterization of phenolic compounds from lingonberry ( Vaccinium vitis-idaea ) J. Agric. Food Chem. 2006 54 9834 9842 10.1021/jf0623687 17177509 

  23. 23. Lin L.Z. Harnly J.M. LC-MS profiling and quantification of food phenolic components using a standard analytical approach for all plants Food Sci. Technol. New Res. 2008 60 1 103 

  24. 24. Ablajan K. Abliz Z. Shang X.Y. He J.M. Zhang R.P. Shi J.G. Structural characterization of flavonol 3,7-di- O -glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry J. Mass Spectrom. 2006 41 352 360 10.1002/jms.995 16432803 

  25. 25. Rehman H. Yasin K.A. Choudhary M.A. Khaliq N. Rahman A.U. Choudhary M.I. Malik S. Studies on the chemical constituents of Phyllanthus emblica Nat. Prod. Res. 2007 21 775 781 10.1080/14786410601124664 17763100 

  26. 26. Mena P. Cirlini M. Tassotti M. Herrlinger K.A. Dall’Asta C. Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary ( Rosmarinus officinalis L.) extract Molecules 2016 21 1576 10.3390/molecules21111576 

  27. 27. Wang Y. Tang C. Zhang H. Hepatoprotective effects of kaempferol 3- O -rutinoside and kaempferol 3- O -glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice J. Food Drug Anal. 2015 23 310 317 10.1016/j.jfda.2014.10.002 28911387 

  28. 28. Carmona M. Sánchez A.M. Ferreres F. Zalacain A. Tomás-Barberán F. Alonso G.L. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins Food Chem. 2007 100 445 450 10.1016/j.foodchem.2005.09.065 

  29. 29. Toker G. Aslan M. Yeşilada E. Memişoğlu M. Ito S. Comparative evaluation of the flavonoid content in officinal Tiliae flos and Turkish lime species for quality assessment J. Pharm. Biomed. Anal. 2001 26 111 121 10.1016/S0731-7085(01)00351-X 11451648 

  30. 30. Püssa T. Pällin R. Raudsepp P. Soidla R. Rei M. Inhibition of lipid oxidation and dynamics of polyphenol content in mechanically deboned meat supplemented with sea buckthorn ( Hippophae rhamnoides ) berry residues Food Chem. 2008 107 714 721 10.1016/j.foodchem.2007.08.090 

  31. 31. Aguirre-Hernández E. González-Trujano M.E. Martínez A.L. Moreno J. Kite G. Terrazas T. Soto-Hernández M. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana J. Ethnopharmacol. 2010 127 91 97 10.1016/j.jep.2009.09.044 19799990 

  32. 32. Olas B. Żuchowski J. Lis B. Skalski B. Kontek B. Grabarczyk Ł. Stochmal A. Comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits Food Chem. 2018 247 39 45 10.1016/j.foodchem.2017.12.010 29277226 

  33. 33. Soong Y.Y. Barlow P.J. Isolation and structure elucidation of phenolic compounds from longan ( Dimocarpus longan Lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry J. Chromatogr. A 2005 1085 270 277 10.1016/j.chroma.2005.06.042 16106708 

  34. 34. Yoon K.Y. Hong J.Y. Shin S.R. Analysis on the components of the Elaeagnus multiflora Thunb. leaves Korean J. Food Preserv. 2007 14 639 644 

  35. 35. Srinivasan R. Aruna A. Manigandan K. Pugazhendhi A. Kim M. Shivakumar M.S. Natarajan D. The phytochemical, antioxidant, antimicrobial and antiproliferative potential of Elaeagnus indica Biocatal. Agric. Biotechnol. 2019 20 101265 10.1016/j.bcab.2019.101265 

  36. 36. Asofiei I. Calinescu I. Trifan A. David I.G. Gavrila A.I. Microwave-assisted batch extraction of polyphenols from sea buckthorn leaves Chem. Eng. Commun. 2016 203 1547 1553 10.1080/00986445.2015.1134518 

  37. 37. Oszmiański J. Wojdyło A. Lachowicz S. Gorzelany J. Matłok N. Comparison of bioactive potential of cranberry fruit and fruit-based products versus leaves J. Funct. Foods 2016 22 232 242 10.1016/j.jff.2016.01.015 

  38. 38. Andreotti C. Costa G. Treutter D. Composition of phenolic compounds in pear leaves as affected by genetics, ontogenesis and the environment Sci. Hortic. 2006 109 130 137 10.1016/j.scienta.2006.03.014 

  39. 39. Lachowicz S. Seliga Ł. Pluta S. Distribution of phytochemicals and antioxidative potency in fruit peel, flesh, and seeds of Saskatoon berry Food Chem. 2020 305 125430 10.1016/j.foodchem.2019.125430 31518840 

  40. 40. Rebello L.P.G. Lago-Vanzela E.S. Barcia M.T. Ramos A.M. Stringheta P.C. Da-Silva R. Castillo-Muñoz N. Gomez-Alonso S. Hermosin-Gutierrez I. Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea × IAC 1398-21) using HPLC–DAD–ESI-MS/MS Food Res. Int. 2013 54 354 366 10.1016/j.foodres.2013.07.024 

  41. 41. Parus A. Antioxidant and pharmacological properties of phenolic acids Postępy Fitoter. 2013 1 48 53 

  42. 42. Ribeiro P.P.C. da Silva Chaves K.S.F. de Veras B.O. de Oliveira J.R.S. de Menezes Lima V.L. de Assis C.R.D. Stamford T.C.M. Chemical and biological activities of faveleira ( Cnidoscolus quercifolius Pohl) seed oil for potential health applications Food Chem. 2021 337 127771 10.1016/j.foodchem.2020.127771 32777564 

  43. 43. Meléndez-Martínez A.J. Mandić A.I. Bantis F. Böhm V. Borge G.I.A. Brnčić M. O’Brien N. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs Crit. Rev. Food Sci. Nutr. 2020 1 51 10.1080/10408398.2020.1867959 

  44. 44. Xu C. Zhang Y. Cao L. Lu J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China Food Chem. 2010 119 1557 1565 10.1016/j.foodchem.2009.09.042 

  45. 45. Pantelić M.M. Zagorac D.Č.D. Davidović S.M. Todić S.R. Bešlić Z.S. Gašić U.M. Natić M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia Food Chem. 2016 211 243 252 10.1016/j.foodchem.2016.05.051 27283628 

  46. 46. Nazir N. Zahoor M. Nisar M. Khan I. Karim N. Abdel-Halim H. Ali A. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: Pharmacological and computational approach BMC Complement. Altern. Med. 2018 18 332 10.1186/s12906-018-2381-8 30545352 

  47. 47. Saltan F.Z. Okutucu B. Canbay H.S. Ozel D. In vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts Eurasian J. Anal. Chem. 2017 12 117 126 10.12973/ejac.2017.00158a 

  48. 48. Rockenbach I.I. Gonzaga L.V. Rizelio V.M. Gonçalves A.E.D.S.S. Genovese M.I. Fett R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape ( Vitis vinifera and Vitis labrusca ) pomace from Brazilian winemaking Food Res. Int. 2011 44 897 901 10.1016/j.foodres.2011.01.049 

  49. 49. Bhardwaj P. Varshneya C. Kaistha K. Tandon T. In vitro evaluation of antidiabetic and antioxidant activity of Seabuckthorn ( Hippophae rhamnoides L.) leaves J. Med. Plants Res. 2015 9 929 932 

  50. 50. Kim J.S. Kwon Y.S. Sa Y.J. Kim M.J. Isolation and identification of sea buckthorn ( Hippophae rhamnoides ) phenolics with antioxidant activity and α-glucosidase inhibitory effect J. Agric. Food Chem. 2011 59 138 144 10.1021/jf103130a 21142100 

  51. 51. You Q. Chen F. Wang X. Jiang Y. Lin S. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase LWT Food Sci. Technol. 2012 46 164 168 10.1016/j.lwt.2011.10.011 

  52. 52. Zhang L. Hogan S. Li J. Sun S. Canning C. Zheng S.J. Zhou K. Grape skin extract inhibits mammalian intestinal α-glucosidase activity and suppresses postprandial glycemic response in streptozocin-treated mice Food Chem. 2011 126 466 471 10.1016/j.foodchem.2010.11.016 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로