$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effect of Reactive Oxygen Species on the Endoplasmic Reticulum and Mitochondria during Intracellular Pathogen Infection of Mammalian Cells 원문보기

Antioxidants, v.10 no.6, 2021년, pp.872 -   

Lee, Junghwan (Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Korea) ,  Song, Chang-Hwa (asrai1509@gmail.com)

Abstract AI-Helper 아이콘AI-Helper

Oxidative stress, particularly reactive oxygen species (ROS), are important for innate immunity against pathogens. ROS directly attack pathogens, regulate and amplify immune signals, induce autophagy and activate inflammation. In addition, production of ROS by pathogens affects the endoplasmic retic...

Keyword

참고문헌 (236)

  1. 1. Moghadam Z.M. Henneke P. Kolter J. From flies to men: ROS and the NADPH oxidase in phagocytes Front. Cell Dev. Biol. 2021 9 628991 10.3389/fcell.2021.628991 33842458 

  2. 2. Herb M. Schramm M. Functions of ROS in macrophages and antimicrobial immunity Antioxidants 2021 10 313 10.3390/antiox10020313 33669824 

  3. 3. Coleman J.W. Nitric oxide in immunity and inflammation Int. Immunopharmacol. 2001 1 1397 1406 10.1016/S1567-5769(01)00086-8 11515807 

  4. 4. Mayer B. Hemmens B. Biosynthesis and action of nitric oxide in mammalian cells Trends Biochem. Sci. 1997 22 477 481 10.1016/S0968-0004(97)01147-X 9433128 

  5. 5. Nathan C. Xie Q.W. Nitric oxide synthases: Roles, tolls, and controls Cell 1994 78 915 918 10.1016/0092-8674(94)90266-6 7522969 

  6. 6. Di Meo S. Reed T.T. Venditti P. Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions Oxidative Med. Cell. Longev. 2016 2016 1245049 10.1155/2016/1245049 

  7. 7. Panieri E. Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells Cell Death Dis. 2016 7 e2253 10.1038/cddis.2016.105 27277675 

  8. 8. Csanyi G. Miller F.J. Jr. Oxidative stress in cardiovascular disease Int. J. Mol. Sci. 2014 15 6002 6008 10.3390/ijms15046002 24722571 

  9. 9. Hayes J.D. Dinkova-Kostova A.T. Tew K.D. Oxidative stress in cancer Cancer Cell 2020 38 167 197 10.1016/j.ccell.2020.06.001 32649885 

  10. 10. Tarafdar A. Pula G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders Int. J. Mol. Sci. 2018 19 3824 10.3390/ijms19123824 

  11. 11. Thomson N.C. Targeting oxidant-dependent mechanisms for the treatment of respiratory diseases and their comorbidities Curr. Opin. Pharmacol. 2018 40 1 8 10.1016/j.coph.2017.11.013 29223018 

  12. 12. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury Antioxid. Redox Signal. 2014 20 1126 1167 10.1089/ars.2012.5149 23991888 

  13. 13. Perillo B. Di Donato M. Pezone A. Di Zazzo E. Giovannelli P. Galasso G. Castoria G. Migliaccio A. ROS in cancer therapy: The bright side of the moon Exp. Mol. Med. 2020 52 192 203 10.1038/s12276-020-0384-2 32060354 

  14. 14. Jones R.M. Mercante J.W. Neish A.S. Reactive oxygen production induced by the gut microbiota: Pharmacotherapeutic Implications Curr. Med. Chem. 2012 19 1519 1529 10.2174/092986712799828283 22360484 

  15. 15. Fang F.C. Antimicrobial actions of reactive oxygen species mBio 2011 2 10.1128/mBio.00141-11 

  16. 16. Paiva C.N. Bozza M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 2014 20 1000 1037 10.1089/ars.2013.5447 23992156 

  17. 17. Spatial properties of reactive oxygen species govern pathogen-specific immune system responses Antioxid. Redox Signal. 2020 32 982 992 10.1089/ars.2020.8027 32008365 

  18. 18. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release Physiol. Rev. 2014 94 909 950 10.1152/physrev.00026.2013 24987008 

  19. 19. Burgos-Moron E. Abad-Jimenez Z. Martinez de Maranon A. Iannantuoni F. Escribano-Lopez I. Lopez-Domenech S. Salom C. Jover A. Mora V. Roldan I. Relationship between oxidative stress, ER stress, and inflammation in Type 2 diabetes: The battle continues J. Clin. Med. 2019 8 1385 10.3390/jcm8091385 

  20. 20. Bresciani G. da Cruz I.B.M. Gonzalez-Gallego J. Chapter four―Manganese superoxide dismutase and oxidative stress modulation Advances in Clinical Chemistry Makowski G.S. Elsevier Amsterdam, The Netherlands 2015 Volume 68 87 130 

  21. 21. Fukai T. Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases Antioxid. Redox Signal. 2011 15 1583 1606 10.1089/ars.2011.3999 21473702 

  22. 22. Sinha K. Das J. Pal P.B. Sil P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis Arch. Toxicol. 2013 87 1157 1180 10.1007/s00204-013-1034-4 23543009 

  23. 23. Galluzzi L. Morselli E. Kepp O. Vitale I. Rigoni A. Vacchelli E. Michaud M. Zischka H. Castedo M. Kroemer G. Mitochondrial gateways to cancer Mol. Asp. Med. 2010 31 1 20 10.1016/j.mam.2009.08.002 

  24. 24. Brand M.D. The sites and topology of mitochondrial superoxide production Exp. Gerontol. 2010 45 466 472 10.1016/j.exger.2010.01.003 20064600 

  25. 25. Zhao R.Z. Jiang S. Zhang L. Yu Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) Int. J. Mol. Med. 2019 44 3 15 10.3892/ijmm.2019.4188 31115493 

  26. 26. Bae Y.S. Oh H. Rhee S.G. Yoo Y.D. Regulation of reactive oxygen species generation in cell signaling Mol. Cells 2011 32 491 509 10.1007/s10059-011-0276-3 22207195 

  27. 27. Kudin A.P. Bimpong-Buta N.Y. Vielhaber S. Elger C.E. Kunz W.S. Characterization of superoxide-producing sites in isolated brain mitochondria J. Biol. Chem. 2004 279 4127 4135 10.1074/jbc.M310341200 14625276 

  28. 28. Chen Q. Vazquez E.J. Moghaddas S. Hoppel C.L. Lesnefsky E.J. Production of reactive oxygen species by mitochondria: Central role of complex III J. Biol. Chem. 2003 278 36027 36031 10.1074/jbc.M304854200 12840017 

  29. 29. Poyton R.O. Ball K.A. Castello P.R. Mitochondrial generation of free radicals and hypoxic signaling Trends Endocrinol. Metab. 2009 20 332 340 10.1016/j.tem.2009.04.001 19733481 

  30. 30. St-Pierre J. Buckingham J.A. Roebuck S.J. Brand M.D. Topology of superoxide production from different sites in the mitochondrial electron transport chain J. Biol. Chem. 2002 277 44784 44790 10.1074/jbc.M207217200 12237311 

  31. 31. Kushnareva Y. Murphy A.N. Andreyev A. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation-reduction state Biochem. J. 2002 368 545 553 10.1042/bj20021121 12180906 

  32. 32. Lambert A.J. Brand M.D. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane Biochem. J. 2004 382 511 517 10.1042/BJ20040485 15175007 

  33. 33. Iwata S. Lee J.W. Okada K. Lee J.K. Iwata M. Rasmussen B. Link T.A. Ramaswamy S. Jap B.K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex Science 1998 281 64 71 10.1126/science.281.5373.64 9651245 

  34. 34. Abo A. Pick E. Hall A. Totty N. Teahan C.G. Segal A.W. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1 Nature 1991 353 668 670 10.1038/353668a0 1922386 

  35. 35. Lambeth J.D. NOX enzymes and the biology of reactive oxygen Nat. Rev. Immunol. 2004 4 181 189 10.1038/nri1312 15039755 

  36. 36. Yang H.C. Cheng M.L. Ho H.Y. Chiu D.T. The microbicidal and cytoregulatory roles of NADPH oxidases Microbes Infect. 2011 13 109 120 10.1016/j.micinf.2010.10.008 20971207 

  37. 37. Touyz R.M. Chen X. Tabet F. Yao G. He G. Quinn M.T. Pagano P.J. Schiffrin E.L. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: Regulation by angiotensin II Circ. Res. 2002 90 1205 1213 10.1161/01.RES.0000020404.01971.2F 12065324 

  38. 38. Halliwell B. Phagocyte-derived reactive species: Salvation or suicide? Trends Biochem. Sci. 2006 31 509 515 10.1016/j.tibs.2006.07.005 16890439 

  39. 39. Panday A. Sahoo M.K. Osorio D. Batra S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies Cell. Mol. Immunol. 2015 12 5 23 10.1038/cmi.2014.89 25263488 

  40. 40. Yoboue E.D. Sitia R. Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages Cell Death Dis. 2018 9 331 10.1038/s41419-017-0033-4 29491367 

  41. 41. Bhandary B. Marahatta A. Kim H.-R. Chae H.-J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases Int. J. Mol. Sci. 2013 14 434 456 10.3390/ijms14010434 23263672 

  42. 42. Malhotra J.D. Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword? Antioxid. Redox Signal. 2007 9 2277 2293 10.1089/ars.2007.1782 17979528 

  43. 43. Gross E. Kastner D.B. Kaiser C.A. Fass D. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell Cell 2004 117 601 610 10.1016/S0092-8674(04)00418-0 15163408 

  44. 44. Sevier C.S. Kaiser C.A. Ero1 and redox homeostasis in the endoplasmic reticulum Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2008 1783 549 10.1016/j.bbamcr.2007.12.011 

  45. 45. Harding H.P. Zhang Y. Zeng H. Novoa I. Lu P.D. Calfon M. Sadri N. Yun C. Popko B. Paules R. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress Mol. Cell 2003 11 619 633 10.1016/S1097-2765(03)00105-9 12667446 

  46. 46. Zeeshan H.M.A. Lee G.H. Kim H.-R. Chae H.-J. Endoplasmic reticulum stress and associated ROS Int. J. Mol. Sci. 2016 17 327 10.3390/ijms17030327 26950115 

  47. 47. Kramer B. Ferrari D.M. Klappa P. Pohlmann N. Soling H.D. Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding Biochem. J. 2001 357 83 95 10.1042/bj3570083 11415439 

  48. 48. Ellgaard L. Ruddock L.W. The human protein disulphide isomerase family: Substrate interactions and functional properties EMBO Rep. 2005 6 28 32 10.1038/sj.embor.7400311 15643448 

  49. 49. Janiszewski M. Lopes L.R. Carmo A.O. Pedro M.A. Brandes R.P. Santos C.X. Laurindo F.R. Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells J. Biol. Chem. 2005 280 40813 40819 10.1074/jbc.M509255200 16150729 

  50. 50. Cox A.G. Winterbourn C.C. Hampton M.B. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling Biochem. J. 2009 425 313 325 10.1042/BJ20091541 20025614 

  51. 51. Cotugno N. Finocchi A. Cagigi A. Di Matteo G. Chiriaco M. Di Cesare S. Rossi P. Aiuti A. Palma P. Douagi I. Defective B-cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease J. Allergy Clin. Immunol. 2015 135 753 761.e752 10.1016/j.jaci.2014.07.012 25175493 

  52. 52. Sarsour E.H. Venkataraman S. Kalen A.L. Oberley L.W. Goswami P.C. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth Aging Cell 2008 7 405 417 10.1111/j.1474-9726.2008.00384.x 18331617 

  53. 53. Cross C.E. Halliwell B. Borish E.T. Pryor W.A. Ames B.N. Saul R.L. McCord J.M. Harman D. Oxygen radicals and human disease Ann. Intern. Med. 1987 107 526 545 10.7326/0003-4819-107-4-526 3307585 

  54. 54. Liu C.H. Liu H. Ge B. Innate immunity in tuberculosis: Host defense vs. pathogen evasion Cell. Mol. Immunol. 2017 14 963 975 10.1038/cmi.2017.88 28890547 

  55. 55. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses Clin. Microbiol. Rev. 2009 22 240 273 10.1128/CMR.00046-08 19366914 

  56. 56. Kumagai Y. Akira S. Identification and functions of pattern-recognition receptors J. Allergy Clin. Immunol. 2010 125 985 992 10.1016/j.jaci.2010.01.058 20392481 

  57. 57. Thannickal V.J. Fanburg B.L. Reactive oxygen species in cell signaling Am. J. Physiol. Lung Cell Mol. Physiol. 2000 279 L1005 L1028 10.1152/ajplung.2000.279.6.L1005 11076791 

  58. 58. Kawasaki T. Kawai T. Toll-like receptor signaling pathways Front. Immunol. 2014 5 10.3389/fimmu.2014.00461 

  59. 59. Kawai T. Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors Nat. Immunol. 2010 11 373 384 10.1038/ni.1863 20404851 

  60. 60. Celhar T. Magalhaes R. Fairhurst A.M. TLR7 and TLR9 in SLE: When sensing self goes wrong Immunol. Res. 2012 53 58 77 10.1007/s12026-012-8270-1 22434514 

  61. 61. Akira S. Uematsu S. Takeuchi O. Pathogen recognition and innate immunity Cell 2006 124 783 801 10.1016/j.cell.2006.02.015 16497588 

  62. 62. Zhang S.-Y. Jouanguy E. Ugolini S. Smahi A. Elain G. Romero P. Segal D. Sancho-Shimizu V. Lorenzo L. Puel A. TLR3 deficiency in patients with herpes simplex encephalitis Science 2007 317 1522 1527 10.1126/science.1139522 17872438 

  63. 63. Bernard J.J. Cowing-Zitron C. Nakatsuji T. Muehleisen B. Muto J. Borkowski A.W. Martinez L. Greidinger E.L. Yu B.D. Gallo R.L. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3 Nat. Med. 2012 18 1286 1290 10.1038/nm.2861 22772463 

  64. 64. Laroux F.S. Romero X. Wetzler L. Engel P. Terhorst C. Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of gram-negative bacteria J. Immunol. 2005 175 5596 5600 10.4049/jimmunol.175.9.5596 16237045 

  65. 65. Fan J. Frey R.S. Malik A.B. TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase J. Clin. Investig. 2003 112 1234 1243 10.1172/JCI18696 14561708 

  66. 66. Akira S. Takeda K. Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity Nat. Immunol. 2001 2 675 680 10.1038/90609 11477402 

  67. 67. Park H.S. Chun J.N. Jung H.Y. Choi C. Bae Y.S. Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells Cardiovasc. Res. 2006 72 447 455 10.1016/j.cardiores.2006.09.012 17064675 

  68. 68. Lambeth J.D. Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases Curr. Opin. Hematol. 2002 9 11 17 10.1097/00062752-200201000-00003 11753072 

  69. 69. Takeya R. Sumimoto H. Molecular mechanism for activation of superoxide-producing NADPH oxidases Mol. Cells 2003 16 271 277 14744014 

  70. 70. Van Maele L. Carnoy C. Cayet D. Songhet P. Dumoutier L. Ferrero I. Janot L. Erard F. Bertout J. Leger H. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa J. Immunol 2010 185 1177 1185 10.4049/jimmunol.1000115 20566828 

  71. 71. Kawahara T. Kuwano Y. Teshima-Kondo S. Takeya R. Sumimoto H. Kishi K. Tsunawaki S. Hirayama T. Rokutan K. Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells J. Immunol. 2004 172 3051 3058 10.4049/jimmunol.172.5.3051 14978110 

  72. 72. Joo J.H. Ryu J.H. Kim C.H. Kim H.J. Suh M.S. Kim J.O. Chung S.Y. Lee S.N. Kim H.M. Bae Y.S. Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa Antioxid. Redox Signal. 2012 16 57 70 10.1089/ars.2011.3898 21714724 

  73. 73. Makni-Maalej K. Boussetta T. Hurtado-Nedelec M. Belambri S.A. Gougerot-Pocidalo M.A. El-Benna J. The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: Critical role of p47phox phosphorylation and the proline isomerase Pin1 J. Immunol. 2012 189 4657 4665 10.4049/jimmunol.1201007 23002436 

  74. 74. Lee J.-G. Lee S.-H. Park D.-W. Lee S.-H. Yoon H.-S. Chin B.-R. Kim J.-H. Kim J.-R. Baek S.-H. Toll-like receptor 9-stimulated monocyte chemoattractant protein-1 is mediated via JNK-cytosolic phospholipase A2-ROS signaling Cell. Signal. 2008 20 105 111 10.1016/j.cellsig.2007.09.003 17939949 

  75. 75. Meunier E. Broz P. Evolutionary convergence and divergence in NLR function and structure Trends Immunol. 2017 38 744 757 10.1016/j.it.2017.04.005 28579324 

  76. 76. Park J.-H. Kim Y.-G. McDonald C. Kanneganti T.-D. Hasegawa M. Body-Malapel M. Inohara N. Nunez G. RICK/RIP2 Mediates Innate Immune Responses Induced through Nod1 and Nod2 but Not TLRs J. Immunol. 2007 178 2380 2386 10.4049/jimmunol.178.4.2380 17277144 

  77. 77. Okugawa T. Kaneko T. Yoshimura A. Silverman N. Hara Y. NOD1 and NOD2 mediate sensing of periodontal pathogens J. Dent. Res. 2010 89 186 191 10.1177/0022034509354843 20040739 

  78. 78. Lipinski S. Till A. Sina C. Arlt A. Grasberger H. Schreiber S. Rosenstiel P. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses J. Cell Sci. 2009 122 3522 3530 10.1242/jcs.050690 19759286 

  79. 79. Martinon F. Tschopp J. Inflammatory caspases and inflammasomes: Master switches of inflammation Cell Death Differ. 2007 14 10 22 10.1038/sj.cdd.4402038 16977329 

  80. 80. Schroder K. Tschopp J. The Inflammasomes Cell 2010 140 821 832 10.1016/j.cell.2010.01.040 20303873 

  81. 81. Cruz C.M. Rinna A. Forman H.J. Ventura A.L. Persechini P.M. Ojcius D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages J. Biol. Chem. 2007 282 2871 2879 10.1074/jbc.M608083200 17132626 

  82. 82. Bauernfeind F. Bartok E. Rieger A. Franchi L. Nunez G. Hornung V. Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome J. Immunol. 2011 187 613 617 10.4049/jimmunol.1100613 21677136 

  83. 83. Segovia J. Sabbah A. Mgbemena V. Tsai S.Y. Chang T.H. Berton M.T. Morris I.R. Allen I.C. Ting J.P. Bose S. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection PLoS ONE 2012 7 e29695 10.1371/journal.pone.0029695 22295065 

  84. 84. Harijith A. Ebenezer D.L. Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation Front. Physiol. 2014 5 352 10.3389/fphys.2014.00352 25324778 

  85. 85. Shimada K. Crother T.R. Karlin J. Dagvadorj J. Chiba N. Chen S. Ramanujan V.K. Wolf A.J. Vergnes L. Ojcius D.M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis Immunity 2012 36 401 414 10.1016/j.immuni.2012.01.009 22342844 

  86. 86. Kohchi C. Inagawa H. Nishizawa T. Soma G.-I. ROS and innate immunity Anticancer Res. 2009 29 817 821 19414314 

  87. 87. Reczek C.R. Chandel N.S. ROS-dependent signal transduction Curr. Opin. Cell Biol. 2015 33 8 13 10.1016/j.ceb.2014.09.010 25305438 

  88. 88. Li Z. Xu X. Leng X. He M. Wang J. Cheng S. Wu H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections Arch. Virol. 2017 162 603 610 10.1007/s00705-016-3130-2 27848013 

  89. 89. Naik E. Dixit V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production J. Exp. Med. 2011 208 417 420 10.1084/jem.20110367 21357740 

  90. 90. Bulua A.C. Simon A. Maddipati R. Pelletier M. Park H. Kim K.Y. Sack M.N. Kastner D.L. Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) J. Exp. Med. 2011 208 519 533 10.1084/jem.20102049 21282379 

  91. 91. Rada B. Gardina P. Myers T.G. Leto T.L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin Mucosal. Immunol. 2011 4 158 171 10.1038/mi.2010.62 20962773 

  92. 92. Brandes R.P. Viedt C. Nguyen K. Beer S. Kreuzer J. Busse R. Gorlach A. Thrombin-induced MCP-1 expression involves activation of the p22phox-containing NADPH oxidase in human vascular smooth muscle cells Thromb. Haemost. 2001 85 1104 1110 11434692 

  93. 93. Cho S.O. Lim J.W. Kim H. Red ginseng extract inhibits the expression of MCP-1 and iNOS in Helicobacter pylori -infected gastric epithelial cells by suppressing the activation of NADPH oxidase and Jak2/Stat3 J. Ethnopharmacol. 2013 150 761 764 10.1016/j.jep.2013.09.013 24055641 

  94. 94. Cai S. Batra S. Lira S.A. Kolls J.K. Jeyaseelan S. CXCL1 regulates pulmonary host defense to Klebsiella infection via CXCL2, CXCL5, NF-κB, and MAPKs J. Immunol. 2010 185 6214 6225 10.4049/jimmunol.0903843 20937845 

  95. 95. Vaddi K. Newton R.C. Comparison of biological responses of human monocytes and THP-1 cells to chemokines of the intercrine-β family J. Leukoc. Biol. 1994 55 756 762 10.1002/jlb.55.6.756 7515094 

  96. 96. Furie M.B. Randolph G.J. Chemokines and tissue injury Am. J. Pathol. 1995 146 1287 1301 7778669 

  97. 97. Tan J.H. Ludeman J.P. Wedderburn J. Canals M. Hall P. Butler S.J. Taleski D. Christopoulos A. Hickey M.J. Payne R.J. Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1) J. Biol. Chem. 2013 288 10024 10034 10.1074/jbc.M112.447359 23408426 

  98. 98. Shekhova E. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity PLoS Pathog. 2020 16 e1008470 10.1371/journal.ppat.1008470 32463825 

  99. 99. West A.P. Brodsky I.E. Rahner C. Woo D.K. Erdjument-Bromage H. Tempst P. Walsh M.C. Choi Y. Shadel G.S. Ghosh S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS Nature 2011 472 476 480 10.1038/nature09973 21525932 

  100. 100. Mohamed W. Domann E. Chakraborty T. Mannala G. Lips K.S. Heiss C. Schnettler R. Alt V. TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress BMC Microbiol. 2016 16 230 10.1186/s12866-016-0855-8 27716055 

  101. 101. Abuaita B.H. Schultz T.L. O’Riordan M.X. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus Cell Host Microbe 2018 24 625 636.e625 10.1016/j.chom.2018.10.005 30449314 

  102. 102. Garaude J. Acin-Perez R. Martinez-Cano S. Enamorado M. Ugolini M. Nistal-Villan E. Hervas-Stubbs S. Pelegrin P. Sander L.E. Enriquez J.A. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense Nat. Immunol. 2016 17 1037 1045 10.1038/ni.3509 27348412 

  103. 103. Acin-Perez R. Carrascoso I. Baixauli F. Roche-Molina M. Latorre-Pellicer A. Fernandez-Silva P. Mittelbrunn M. Sanchez-Madrid F. Perez-Martos A. Lowell C.A. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use Cell Metab. 2014 19 1020 1033 10.1016/j.cmet.2014.04.015 24856931 

  104. 104. Forman H.J. Torres M. Reactive oxygen species and cell signaling Am. J. Respir. Crit. Care Med. 2002 166 S4 S8 10.1164/rccm.2206007 12471082 

  105. 105. Hohn D.C. Lehrer R.I. NADPH oxidase deficiency in X-linked chronic granulomatous disease J. Clin. Investig. 1975 55 707 713 10.1172/JCI107980 235560 

  106. 106. Ben-Ari J. Wolach O. Gavrieli R. Wolach B. Infections associated with chronic granulomatous disease: Linking genetics to phenotypic expression Expert Rev. Anti Infect. 2012 10 881 894 10.1586/eri.12.77 

  107. 107. Myers J.T. Tsang A.W. Swanson J.A. Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages J. Immunol. 2003 171 5447 5453 10.4049/jimmunol.171.10.5447 14607950 

  108. 108. KuoLee R. Harris G. Conlan J.W. Chen W. Role of neutrophils and NADPH phagocyte oxidase in host defense against respiratory infection with virulent Francisella tularensis in mice Microbes Infect. 2011 13 447 456 10.1016/j.micinf.2011.01.010 21277990 

  109. 109. Roca F.J. Whitworth L.J. Redmond S. Jones A.A. Ramakrishnan L. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial-lysosomal-endoplasmic reticulum circuit Cell 2019 178 1344 1361.e1311 10.1016/j.cell.2019.08.004 31474371 

  110. 110. Sonoda J. Laganiere J. Mehl I.R. Barish G.D. Chong L.W. Li X. Scheffler I.E. Mock D.C. Bataille A.R. Robert F. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense Genes Dev. 2007 21 1909 1920 10.1101/gad.1553007 17671090 

  111. 111. Barber G.N. Host defense, viruses and apoptosis Cell Death Differ. 2001 8 113 126 10.1038/sj.cdd.4400823 11313713 

  112. 112. Flory E. Kunz M. Scheller C. Jassoy C. Stauber R. Rapp U.R. Ludwig S. Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase J. Biol. Chem. 2000 275 8307 8314 10.1074/jbc.275.12.8307 10722660 

  113. 113. Lin R.J. Liao C.L. Lin Y.L. Replication-incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system J. Gen. Virol. 2004 85 521 533 10.1099/vir.0.19496-0 14769909 

  114. 114. Hayashi K. Hooper L.C. Okuno T. Takada Y. Hooks J.J. Inhibition of HSV-1 by chemoattracted neutrophils: Supernatants of corneal epithelial cells (HCE) and macrophages (THP-1) treated with virus components chemoattract neutrophils (PMN), and supernatants of PMN treated with these conditioned media inhibit viral growth Arch. Virol. 2012 157 1377 1381 10.1007/s00705-012-1306-y 22527863 

  115. 115. Chen Y. Zhou Z. Min W. Mitochondria, oxidative stress and innate immunity Front. Physiol. 2018 9 10.3389/fphys.2018.01487 

  116. 116. Franchi L. Munoz-Planillo R. Nunez G. Sensing and reacting to microbes through the inflammasomes Nat. Immunol. 2012 13 325 332 10.1038/ni.2231 22430785 

  117. 117. Piccini A. Carta S. Tassi S. Lasiglie D. Fossati G. Rubartelli A. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way Proc. Natl. Acad. Sci. USA 2008 105 8067 8072 10.1073/pnas.0709684105 18523012 

  118. 118. Muruve D.A. Petrilli V. Zaiss A.K. White L.R. Clark S.A. Ross P.J. Parks R.J. Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response Nature 2008 452 103 107 10.1038/nature06664 18288107 

  119. 119. Shi J. Zhao Y. Wang K. Shi X. Wang Y. Huang H. Zhuang Y. Cai T. Wang F. Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death Nature 2015 526 660 665 10.1038/nature15514 26375003 

  120. 120. He W.T. Wan H. Hu L. Chen P. Wang X. Huang Z. Yang Z.H. Zhong C.Q. Han J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion Cell Res. 2015 25 1285 1298 10.1038/cr.2015.139 26611636 

  121. 121. Niu J. Wu S. Chen M. Xu K. Guo Q. Lu A. Zhao L. Sun B. Meng G. Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL-1β mediated neutrophil recruitment Cytokine 2019 120 115 124 10.1016/j.cyto.2019.04.019 31055218 

  122. 122. Tilton C. Clippinger A.J. Maguire T. Alwine J.C. Human cytomegalovirus induces multiple means to combat reactive oxygen species J. Virol. 2011 85 12585 12593 10.1128/JVI.05572-11 21937645 

  123. 123. Speir E. Shibutani T. Yu Z.X. Ferrans V. Epstein S.E. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection Circ. Res. 1996 79 1143 1152 10.1161/01.RES.79.6.1143 8943952 

  124. 124. Flores S.C. Marecki J.C. Harper K.P. Bose S.K. Nelson S.K. McCord J.M. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells Proc. Natl. Acad. Sci. USA 1993 90 7632 7636 10.1073/pnas.90.16.7632 8395050 

  125. 125. Guillin O.M. Vindry C. Ohlmann T. Chavatte L. Selenium, selenoproteins and viral infection Nutrients 2019 11 2101 10.3390/nu11092101 31487871 

  126. 126. Manns M.P. Buti M. Gane E. Pawlotsky J.-M. Razavi H. Terrault N. Younossi Z. Hepatitis C virus infection Nat. Rev. Dis. Primers 2017 3 17006 10.1038/nrdp.2017.6 28252637 

  127. 127. Ivanov A.V. Bartosch B. Smirnova O.A. Isaguliants M.G. Kochetkov S.N. HCV and oxidative stress in the liver Viruses 2013 5 439 469 10.3390/v5020439 23358390 

  128. 128. Korenaga M. Wang T. Li Y. Showalter L.A. Chan T. Sun J. Weinman S.A. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production J. Biol. Chem. 2005 280 37481 37488 10.1074/jbc.M506412200 16150732 

  129. 129. Bureau C. Bernad J. Chaouche N. Orfila C. Beraud M. Gonindard C. Alric L. Vinel J.P. Pipy B. Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase J. Biol. Chem. 2001 276 23077 23083 10.1074/jbc.M100698200 11304537 

  130. 130. Boudreau H.E. Emerson S.U. Korzeniowska A. Jendrysik M.A. Leto T.L. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: A new contributor to HCV-induced oxidative stress J. Virol. 2009 83 12934 12946 10.1128/JVI.01059-09 19812163 

  131. 131. De Mochel N.S. Seronello S. Wang S.H. Ito C. Zheng J.X. Liang T.J. Lambeth J.D. Choi J. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection Hepatology 2010 52 47 59 10.1002/hep.23671 20578128 

  132. 132. Snelgrove R.J. Edwards L. Rae A.J. Hussell T. An absence of reactive oxygen species improves the resolution of lung influenza infection Eur. J. Immunol. 2006 36 1364 1373 10.1002/eji.200635977 16703568 

  133. 133. Snelgrove R. Williams A. Thorpe C. Hussell T. Manipulation of immunity to and pathology of respiratory infections Expert Rev. Anti Infect. 2004 2 413 426 10.1586/14787210.2.3.413 15482206 

  134. 134. Suliman H.B. Ryan L.K. Bishop L. Folz R.J. Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase Am. J. Physiol. Lung Cell Mol. Physiol. 2001 280 L69 L78 10.1152/ajplung.2001.280.1.L69 11133496 

  135. 135. Vlahos R. Stambas J. Selemidis S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy Trends Pharm. Sci. 2012 33 3 8 10.1016/j.tips.2011.09.001 21962460 

  136. 136. Akaike T. Role of free radicals in viral pathogenesis and mutation Rev. Med. Virol. 2001 11 87 101 10.1002/rmv.303 11262528 

  137. 137. Li H. Liu L. Zhang D. Xu J. Dai H. Tang N. Su X. Cao B. SARS-CoV-2 and viral sepsis: Observations and hypotheses Lancet 2020 395 1517 1520 10.1016/S0140-6736(20)30920-X 32311318 

  138. 138. Cecchini R. Cecchini A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression Med. Hypotheses 2020 143 110102 10.1016/j.mehy.2020.110102 32721799 

  139. 139. Ademowo O.S. Dias H.K.I. Burton D.G.A. Griffiths H.R. Lipid (per) oxidation in mitochondria: An emerging target in the ageing process? Biogerontology 2017 18 859 879 10.1007/s10522-017-9710-z 28540446 

  140. 140. Mantzarlis K. Tsolaki V. Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies Oxid. Med. Cell Longev. 2017 2017 5985209 10.1155/2017/5985209 28904739 

  141. 141. Effenberger-Neidnicht K. Hartmann M. Mechanisms of hemolysis during sepsis Inflammation 2018 41 1569 1581 10.1007/s10753-018-0810-y 29956069 

  142. 142. Xu Z. Shi L. Wang Y. Zhang J. Huang L. Zhang C. Liu S. Zhao P. Liu H. Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome Lancet Respir. Med. 2020 8 420 422 10.1016/S2213-2600(20)30076-X 32085846 

  143. 143. Wan S. Yi Q. Fan S. Lv J. Zhang X. Guo L. Lang C. Xiao Q. Xiao K. Yi Z. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) medRxiv 2020 10.1101/2020.02.10.20021832 

  144. 144. Chen N. Zhou M. Dong X. Qu J. Gong F. Han Y. Qiu Y. Wang J. Liu Y. Wei Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study Lancet 2020 395 507 513 10.1016/S0140-6736(20)30211-7 32007143 

  145. 145. Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. Zhang L. Fan G. Xu J. Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet 2020 395 497 506 10.1016/S0140-6736(20)30183-5 31986264 

  146. 146. Liu J. Li S. Liu J. Liang B. Wang X. Wang H. Li W. Tong Q. Yi J. Zhao L. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients EBioMedicine 2020 55 102763 10.1016/j.ebiom.2020.102763 32361250 

  147. 147. Galluzzi L. Diotallevi A. Magnani M. Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites Future Sci. OA 2017 3 FSO198 10.4155/fsoa-2017-0020 28883998 

  148. 148. Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum Cell 2000 101 451 454 10.1016/S0092-8674(00)80855-7 10850487 

  149. 149. Cao S.S. Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease Antioxid. Redox Signal. 2014 21 396 413 10.1089/ars.2014.5851 24702237 

  150. 150. Choi J.-A. Song C.-H. Insights into the role of endoplasmic reticulum stress in infectious diseases Front. Immunol. 2020 10 3147 10.3389/fimmu.2019.03147 32082307 

  151. 151. Todd D.J. Lee A.-H. Glimcher L.H. The endoplasmic reticulum stress response in immunity and autoimmunity Nat. Rev. Immunol. 2008 8 663 674 10.1038/nri2359 18670423 

  152. 152. Obacz J. Avril T. Le Reste P.-J. Urra H. Quillien V. Hetz C. Chevet E. Endoplasmic reticulum proteostasis in glioblastoma―From molecular mechanisms to therapeutic perspectives Sci. Signal. 2017 10 eaal2323 10.1126/scisignal.aal2323 28292956 

  153. 153. Bertolotti A. Zhang Y. Hendershot L.M. Harding H.P. Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response Nat. Cell Biol. 2000 2 326 332 10.1038/35014014 10854322 

  154. 154. Almanza A. Carlesso A. Chintha C. Creedican S. Doultsinos D. Leuzzi B. Luis A. McCarthy N. Montibeller L. More S. Endoplasmic reticulum stress signalling―From basic mechanisms to clinical applications FEBS J. 2019 286 241 278 10.1111/febs.14608 30027602 

  155. 155. Santos C.X. Tanaka L.Y. Wosniak J. Laurindo F.R. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: Roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase Antioxid. Redox Signal. 2009 11 2409 2427 10.1089/ars.2009.2625 19388824 

  156. 156. Li G. Scull C. Ozcan L. Tabas I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis J. Cell Biol. 2010 191 1113 1125 10.1083/jcb.201006121 21135141 

  157. 157. Pedruzzi E. Guichard C. Ollivier V. Driss F. Fay M. Prunet C. Marie J.C. Pouzet C. Samadi M. Elbim C. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells Mol. Cell Biol. 2004 24 10703 10717 10.1128/MCB.24.24.10703-10717.2004 15572675 

  158. 158. Haynes C.M. Titus E.A. Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death Mol. Cell 2004 15 767 776 10.1016/j.molcel.2004.08.025 15350220 

  159. 159. Malhotra J.D. Miao H. Zhang K. Wolfson A. Pennathur S. Pipe S.W. Kaufman R.J. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion Proc. Natl. Acad. Sci. USA 2008 105 18525 18530 10.1073/pnas.0809677105 19011102 

  160. 160. Eletto D. Chevet E. Argon Y. Appenzeller-Herzog C. Redox controls UPR to control redox J. Cell Sci. 2014 127 3649 3658 10.1242/jcs.153643 25107370 

  161. 161. Iurlaro R. Munoz-Pinedo C. Cell death induced by endoplasmic reticulum stress FEBS J. 2016 283 2640 2652 10.1111/febs.13598 26587781 

  162. 162. Han J. Back S.H. Hur J. Lin Y.H. Gildersleeve R. Shan J. Yuan C.L. Krokowski D. Wang S. Hatzoglou M. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death Nat. Cell Biol. 2013 15 481 490 10.1038/ncb2738 23624402 

  163. 163. Anilkumar N. San Jose G. Sawyer I. Santos C.X. Sand C. Brewer A.C. Warren D. Shah A.M. A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells Arter. Thromb. Vasc. Biol. 2013 33 e104 e112 10.1161/ATVBAHA.112.300956 

  164. 164. Bedard K. Lardy B. Krause K.-H. NOX family NADPH oxidases: Not just in mammals Biochimie 2007 89 1107 1112 10.1016/j.biochi.2007.01.012 17400358 

  165. 165. Santos C.X. Nabeebaccus A.A. Shah A.M. Camargo L.L. Filho S.V. Lopes L.R. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: Potential role in hypertension Antioxid. Redox Signal. 2014 20 121 134 10.1089/ars.2013.5262 23472786 

  166. 166. Santos C.X. Stolf B.S. Takemoto P.V. Amanso A.M. Lopes L.R. Souza E.B. Goto H. Laurindo F.R. Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages J. Leukoc. Biol. 2009 86 989 998 10.1189/jlb.0608354 19564574 

  167. 167. Gerasimenko J.V. Gerasimenko O.V. Palejwala A. Tepikin A.V. Petersen O.H. Watson A.J. Menadione-induced apoptosis: Roles of cytosolic Ca 2+ elevations and the mitochondrial permeability transition pore J. Cell Sci. 2002 115 485 497 10.1242/jcs.115.3.485 11861756 

  168. 168. Peng T.I. Jou M.J. Oxidative stress caused by mitochondrial calcium overload Ann. N. Y. Acad. Sci. 2010 1201 183 188 10.1111/j.1749-6632.2010.05634.x 20649555 

  169. 169. Kiviluoto S. Vervliet T. Ivanova H. Decuypere J.-P. De Smedt H. Missiaen L. Bultynck G. Parys J.B. Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2013 1833 1612 1624 10.1016/j.bbamcr.2013.01.026 23380704 

  170. 170. Cioffi D.L. Redox regulation of endothelial canonical transient receptor potential channels Antioxid. Redox Signal. 2011 15 1567 1582 10.1089/ars.2010.3740 21126201 

  171. 171. Gorlach A. Bertram K. Hudecova S. Krizanova O. Calcium and ROS: A mutual interplay Redox Biol. 2015 6 260 271 10.1016/j.redox.2015.08.010 26296072 

  172. 172. Pillich H. Loose M. Zimmer K.-P. Chakraborty T. Diverse roles of endoplasmic reticulum stress sensors in bacterial infection Mol. Cell Pediatr. 2016 3 9 10.1186/s40348-016-0037-7 26883353 

  173. 173. Bischof L.J. Kao C.Y. Los F.C. Gonzalez M.R. Shen Z. Briggs S.P. van der Goot F.G. Aroian R.V. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo PLoS Pathog. 2008 4 e1000176 10.1371/journal.ppat.1000176 18846208 

  174. 174. Loose M. Hudel M. Zimmer K.-P. Garcia E. Hammerschmidt S. Lucas R. Chakraborty T. Pillich H. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes J. Infect. Dis. 2015 211 306 316 10.1093/infdis/jiu428 25183769 

  175. 175. Vasallo C. Gastaminza P. Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword Virus Res. 2015 209 100 117 10.1016/j.virusres.2015.03.013 25836277 

  176. 176. Rios-Ocampo W.A. Navas M.C. Faber K.N. Daemen T. Moshage H. The cellular stress response in hepatitis C virus infection: A balancing act to promote viral persistence and host cell survival Virus Res. 2019 263 1 8 10.1016/j.virusres.2018.12.013 30599163 

  177. 177. Rios-Ocampo W.A. Navas M.C. Buist-Homan M. Faber K.N. Daemen T. Moshage H. Hepatitis C Virus Proteins Core and NS5A Are Highly Sensitive to Oxidative Stress-Induced Degradation after eIF2α/ATF4 Pathway Activation Viruses 2020 12 425 10.3390/v12040425 32283772 

  178. 178. Yang T.-C. Lai C.-C. Shiu S.-L. Chuang P.-H. Tzou B.-C. Lin Y.-Y. Tsai F.-J. Lin C.-W. Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells Microbes Infect. 2010 12 643 651 10.1016/j.micinf.2010.04.007 20430109 

  179. 179. Jordan R. Wang L. Graczyk T.M. Block T.M. Romano P.R. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells J. Virol. 2002 76 9588 9599 10.1128/JVI.76.19.9588-9599.2002 12208938 

  180. 180. Abuaita B.H. Burkholder K.M. Boles B.R. O’Riordan M.X. The Endoplasmic Reticulum Stress Sensor Inositol-Requiring Enzyme 1α Augments Bacterial Killing through Sustained Oxidant Production mBio 2015 6 e00705 e00715 10.1128/mBio.00705-15 26173697 

  181. 181. Celli J. Tsolis R.M. Bacteria, the endoplasmic reticulum and the unfolded protein response: Friends or foes? Nat. Rev. Microbiol. 2015 13 71 82 10.1038/nrmicro3393 25534809 

  182. 182. Smith J.A. Khan M. Magnani D.D. Harms J.S. Durward M. Radhakrishnan G.K. Liu Y.P. Splitter G.A. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages PLoS Pathog. 2013 9 e1003785 10.1371/journal.ppat.1003785 24339776 

  183. 183. De Jong M.F. Starr T. Winter M.G. den Hartigh A.B. Child R. Knodler L.A. van Dijl J.M. Celli J. Tsolis R.M. Sensing of bacterial type IV secretion via the unfolded protein response mBio 2013 4 e00418-12 10.1128/mBio.00418-12 23422410 

  184. 184. Lee S.Y. Lee M.S. Cherla R.P. Tesh V.L. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells Cell Microbiol. 2008 10 770 780 10.1111/j.1462-5822.2007.01083.x 18005243 

  185. 185. Choi H.H. Shin D.M. Kang G. Kim K.H. Park J.B. Hur G.M. Lee H.M. Lim Y.J. Park J.K. Jo E.K. Endoplasmic reticulum stress response is involved in Mycobacterium tuberculosis protein ESAT-6-mediated apoptosis FEBS Lett. 2010 584 2445 2454 10.1016/j.febslet.2010.04.050 20416295 

  186. 186. Lim Y.J. Choi J.A. Lee J.H. Choi C.H. Kim H.J. Song C.H. Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4 Apoptosis 2015 20 358 370 10.1007/s10495-014-1080-2 25544271 

  187. 187. Roy A. Kolattukudy P.E. Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy Cell Signal. 2012 24 2123 2131 10.1016/j.cellsig.2012.07.014 22820500 

  188. 188. Lim Y.-J. Choi J.-A. Choi H.-H. Cho S.-N. Kim H.-J. Jo E.-K. Park J.-K. Song C.-H. Endoplasmic reticulum stress pathway-mediated apoptosis in macrophages contributes to the survival of Mycobacterium tuberculosis PLoS ONE 2011 6 e28531 10.1371/journal.pone.0028531 22194844 

  189. 189. Han J.-Y. Lim Y.-J. Choi J.-A. Lee J.-H. Jo S.-H. Oh S.-M. Song C.-H. The role of prostate apoptosis response-4 (Par-4) in Mycobacterium tuberculosis infected macrophages Sci. Rep. 2016 6 32079 10.1038/srep32079 27552917 

  190. 190. Jo S.H. Choi J.-A. Lim Y.-J. Lee J. Cho S.-N. Oh S.-M. Go D. Kim S.-H. Song C.-H. Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis Oncotarget 2017 8 58686 58698 10.18632/oncotarget.17419 28938588 

  191. 191. Lim Y.-J. Choi H.-H. Choi J.-A. Jeong J.A. Cho S.-N. Lee J.-H. Park J.B. Kim H.-J. Song C.-H. Mycobacterium kansasii -induced death of murine macrophages involves endoplasmic reticulum stress responses mediated by reactive oxygen species generation or calpain activation Apoptosis 2013 18 150 159 10.1007/s10495-012-0792-4 23264129 

  192. 192. Oh S.-M. Lim Y.-J. Choi J.-A. Lee J. Cho S.-N. Go D. Kim S.-H. Song C.-H. TNF-α-mediated ER stress causes elimination of Mycobacterium fortuitum reservoirs by macrophage apoptosis FASEB J. 2018 32 3993 4003 10.1096/fj.201701407R 29481309 

  193. 193. Kim S.-H. Cho S.-N. Lim Y.-J. Choi J.-A. Lee J. Go D. Song C.-H. Phagocytosis influences the intracellular survival of Mycobacterium smegmatis via the endoplasmic reticulum stress response Cell Biosci. 2018 8 52 10.1186/s13578-018-0250-2 30288253 

  194. 194. Go D. Lee J. Choi J.-A. Cho S.-N. Kim S.-H. Son S.-H. Song C.-H. Reactive oxygen species-mediated endoplasmic reticulum stress response induces apoptosis of Mycobacterium avium -infected macrophages by activating regulated IRE1-dependent decay pathway Cell Microbiol. 2019 21 e13094 10.1111/cmi.13094 31386788 

  195. 195. Han D. Lerner A.G. Vande Walle L. Upton J.P. Xu W. Hagen A. Backes B.J. Oakes S.A. Papa F.R. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates Cell 2009 138 562 575 10.1016/j.cell.2009.07.017 19665977 

  196. 196. Upton J.P. Wang L. Han D. Wang E.S. Huskey N.E. Lim L. Truitt M. McManus M.T. Ruggero D. Goga A. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2 Science 2012 338 818 822 10.1126/science.1226191 23042294 

  197. 197. Westermann B. Mitochondrial fusion and fission in cell life and death Nat. Rev. Mol. Cell Biol. 2010 11 872 884 10.1038/nrm3013 21102612 

  198. 198. Jeek J. Cooper K.F. Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression Antioxidants 2018 7 13 10.3390/antiox7010013 

  199. 199. Sabouny R. Shutt T.E. Reciprocal regulation of mitochondrial fission and fusion Trends Biochem. Sci. 2020 45 564 577 10.1016/j.tibs.2020.03.009 32291139 

  200. 200. Mukherjee R. Chakrabarti O. Regulation of Mitofusin1 by Mahogunin Ring Finger-1 and the proteasome modulates mitochondrial fusion Biochim. Biophys. Acta 2016 1863 3065 3083 10.1016/j.bbamcr.2016.09.022 27713096 

  201. 201. Yan L. Qi Y. Huang X. Yu C. Lan L. Guo X. Rao Z. Hu J. Lou Z. Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion Nat. Struct. Mol. Biol. 2018 25 233 243 10.1038/s41594-018-0034-8 29483649 

  202. 202. Chen H. Detmer S.A. Ewald A.J. Griffin E.E. Fraser S.E. Chan D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development J. Cell Biol. 2003 160 189 200 10.1083/jcb.200211046 12527753 

  203. 203. Mishra P. Chan D.C. Metabolic regulation of mitochondrial dynamics J. Cell Biol. 2016 212 379 387 10.1083/jcb.201511036 26858267 

  204. 204. Rambold A.S. Pearce E.L. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function Trends Immunol. 2018 39 6 18 10.1016/j.it.2017.08.006 28923365 

  205. 205. Otera H. Wang C. Cleland M.M. Setoguchi K. Yokota S. Youle R.J. Mihara K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells J. Cell Biol. 2010 191 1141 1158 10.1083/jcb.201007152 21149567 

  206. 206. Osellame L.D. Singh A.P. Stroud D.A. Palmer C.S. Stojanovski D. Ramachandran R. Ryan M.T. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission J. Cell Sci. 2016 129 2170 2181 10.1242/jcs.185165 27076521 

  207. 207. Cribbs J.T. Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death EMBO Rep. 2007 8 939 944 10.1038/sj.embor.7401062 17721437 

  208. 208. Karbowski M. Neutzner A. Youle R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division J. Cell Biol. 2007 178 71 84 10.1083/jcb.200611064 17606867 

  209. 209. Pendin D. Filadi R. Pizzo P. The concerted action of mitochondrial dynamics and positioning: New characters in cancer onset and progression Front. Oncol. 2017 7 10.3389/fonc.2017.00102 

  210. 210. Nagdas S. Kashatus D.F. The interplay between oncogenic signaling networks and mitochondrial dynamics Antioxidants. 2017 6 33 10.3390/antiox6020033 

  211. 211. Arnoult D. Mitochondrial fragmentation in apoptosis Trends Cell Biol. 2007 17 6 12 10.1016/j.tcb.2006.11.001 17116393 

  212. 212. Karbowski M. Youle R.J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis Cell Death Differ. 2003 10 870 880 10.1038/sj.cdd.4401260 12867994 

  213. 213. Fielden L.F. Kang Y. Newton H.J. Stojanovski D. Targeting mitochondria: How intravacuolar bacterial pathogens manipulate mitochondria Cell Tissue Res. 2017 367 141 154 10.1007/s00441-016-2475-x 27515462 

  214. 214. Tiku V. Tan M.-W. Dikic I. Mitochondrial functions in infection and immunity Trends Cell Biol. 2020 30 263 275 10.1016/j.tcb.2020.01.006 32200805 

  215. 215. Angajala A. Lim S. Phillips J.B. Kim J.H. Yates C. You Z. Tan M. Diverse roles of mitochondria in immune responses: Novel insights into immuno-metabolism Front. Immunol. 2018 9 1605 10.3389/fimmu.2018.01605 30050539 

  216. 216. Korenaga M. Okuda M. Otani K. Wang T. Li Y. Weinman S.A. Mitochondrial dysfunction in hepatitis C J. Clin. Gastroenterol. 2005 39 S162 S166 10.1097/01.mcg.0000155517.02468.46 15758653 

  217. 217. McCormick A.L. Smith V.L. Chow D. Mocarski E.S. Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis J. Virol. 2003 77 631 641 10.1128/JVI.77.1.631-641.2003 12477866 

  218. 218. Lupfer C. Thomas P.G. Anand P.K. Vogel P. Milasta S. Martinez J. Huang G. Green M. Kundu M. Chi H. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection Nat. Immunol. 2013 14 480 488 10.1038/ni.2563 23525089 

  219. 219. Xia M. Gonzalez P. Li C. Meng G. Jiang A. Wang H. Gao Q. Debatin K.-M. Beltinger C. Wei J. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling J. Virol. 2014 88 5152 5164 10.1128/JVI.03851-13 24574393 

  220. 220. Xia M. Meng G. Jiang A. Chen A. Dahlhaus M. Gonzalez P. Beltinger C. Wei J. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus Oncotarget 2014 5 3907 3918 10.18632/oncotarget.2028 25004098 

  221. 221. Keck F. Brooks-Faulconer T. Lark T. Ravishankar P. Bailey C. Salvador-Morales C. Narayanan A. Altered mitochondrial dynamics as a consequence of Venezuelan Equine encephalitis virus infection Virulence 2017 8 1849 1866 10.1080/21505594.2016.1276690 28075229 

  222. 222. Mohasin M. Balbirnie-Cumming K. Fisk E. Prestwich E.C. Russell C.D. Marshall J. Pridans C. Allen S.P. Shaw P.J. De Vos K.J. Macrophages utilize mitochondrial fission to enhance mROS production during responses to Streptococcus pneumoniae bioRxiv 2019 10.1101/722603 

  223. 223. Jain P. Luo Z.-Q. Blanke S.R. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death Proc. Natl. Acad. Sci. USA 2011 108 16032 16037 10.1073/pnas.1105175108 21903925 

  224. 224. Duan C. Kuang L. Xiang X. Zhang J. Zhu Y. Wu Y. Yan Q. Liu L. Li T. Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways Cell Death Dis. 2020 11 251 10.1038/s41419-020-2461-9 32312970 

  225. 225. Kim I.-J. Lee J. Oh S.J. Yoon M.-S. Jang S.-S. Holland R.L. Reno M.L. Hamad M.N. Maeda T. Chung H.J. Helicobacter pylori Infection Modulates Host Cell Metabolism through VacA-Dependent Inhibition of mTORC1 Cell Host Microbe 2018 23 583 593.e588 10.1016/j.chom.2018.04.006 29746831 

  226. 226. De la Cruz Lopez K.G. Toledo Guzman M.E. Sanchez E.O. Garcia Carranca A. mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer Front. Oncol. 2019 9 10.3389/fonc.2019.01373 

  227. 227. Hernandez L.D. Pypaert M. Flavell R.A. Galan J.E. A Salmonella protein causes macrophage cell death by inducing autophagy J. Cell Biol. 2003 163 1123 1131 10.1083/jcb.200309161 14662750 

  228. 228. Lobet E. Willemart K. Ninane N. Demazy C. Sedzicki J. Lelubre C. De Bolle X. Renard P. Raes M. Dehio C. Mitochondrial fragmentation affects neither the sensitivity to TNFα-induced apoptosis of Brucella -infected cells nor the intracellular replication of the bacteria Sci. Rep. 2018 8 5173 10.1038/s41598-018-23483-3 29581535 

  229. 229. Stavru F. Bouillaud F. Sartori A. Ricquier D. Cossart P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection Proc. Natl. Acad. Sci. USA 2011 108 3612 3617 10.1073/pnas.1100126108 21321208 

  230. 230. Zhang Y. Yao Y. Qiu X. Wang G. Hu Z. Chen S. Wu Z. Yuan N. Gao H. Wang J. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing Nat. Immunol. 2019 20 433 446 10.1038/s41590-019-0324-2 30804553 

  231. 231. Escoll P. Song O.-R. Viana F. Steiner B. Lagache T. Olivo-Marin J.-C. Impens F. Brodin P. Hilbi H. Buchrieser C. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages Cell Host Microbe 2017 22 302 316.e307 10.1016/j.chom.2017.07.020 28867389 

  232. 232. Chowdhury S.R. Reimer A. Sharan M. Kozjak-Pavlovic V. Eulalio A. Prusty B.K. Fraunholz M. Karunakaran K. Rudel T. Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission J. Cell Biol. 2017 216 1071 1089 10.1083/jcb.201608063 28330939 

  233. 233. Asalla S. Mohareer K. Banerjee S. Small molecule mediated restoration of mitochondrial function augments anti-mycobacterial activity of human macrophages subjected to cholesterol induced asymptomatic dyslipidemia Front. Cell. Infect. Microbiol. 2017 7 10.3389/fcimb.2017.00439 29067283 

  234. 234. Jamwal S. Midha M.K. Verma H.N. Basu A. Rao K.V.S. Manivel V. Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis Sci. Rep. 2013 3 1328 10.1038/srep01328 23435464 

  235. 235. Lee J. Choi J.A. Cho S.N. Son S.H. Song C.H. Mitofusin 2-deficiency suppresses Mycobacterium tuberculosis survival in macrophages Cells 2019 8 1355 10.3390/cells8111355 31671648 

  236. 236. Xiao B. Goh J.-Y. Xiao L. Xian H. Lim K.-L. Liou Y.-C. Reactive oxygen species trigger Parkin/PINK1 pathway-dependent mitophagy by inducing mitochondrial recruitment of Parkin J. Biol. Chem. 2017 292 16697 16708 10.1074/jbc.M117.787739 28848050 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로