$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Temporal Patternization of Power Signatures for Appliance Classification in NILM 원문보기

Energies, v.14 no.10, 2021년, pp.2931 -   

Kim, Hwan (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Lim, Sungsu (Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

Non-Intrusive Load Monitoring (NILM) techniques are effective for managing energy and for addressing imbalances between the energy demand and supply. Various studies based on deep learning have reported the classification of appliances from aggregated power signals. In this paper, we propose a novel...

참고문헌 (27)

  1. Hart Nonintrusive Appliance Load Monitoring Proc. IEEE 1992 10.1109/5.192069 80 1870 

  2. Hassan An empirical investigation of VI trajectory based load signatures for non-intrusive load monitoring IEEE Trans. Smart Grid 2013 10.1109/TSG.2013.2271282 5 870 

  3. 10.1007/978-3-642-20267-4_4 Figueiredo, M.B., De Almeida, A., and Ribeiro, B. (2011, January 14-16). An experimental study on electrical signature identification of non-intrusive load monitoring (nilm) systems. Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Ljubljana, Slovenia. 

  4. 10.1007/978-3-642-28942-2_29 Kramer, O., Wilken, O., Beenken, P., Hein, A., Hüwel, A., Klingenberg, T., Meinecke, C., Raabe, T., and Sonnenschein, M. (2012, January 28-30). On ensemble classifiers for nonintrusive appliance load monitoring. Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, Salamanca, Spain. 

  5. Giri Towards automated appliance recognition using an EMF sensor in NILM platforms Adv. Eng. Inform. 2013 10.1016/j.aei.2013.03.004 27 477 

  6. 10.1109/CIASG.2013.6611501 Wong, Y.F., Şekercioğlu, Y.A., Drummond, T., and Wong, V.S. (2013, January 16-19). Recent approaches to non-intrusive load monitoring techniques in residential settings. Proceedings of the 2013 IEEE Computational Intelligence Applications in Smart Grid (CIASG), Singapore. 

  7. Aiad Non-intrusive load disaggregation with adaptive estimations of devices main power effects and two-way interactions Energy Build. 2016 10.1016/j.enbuild.2016.08.050 130 131 

  8. Cominola A hybrid signature-based iterative disaggregation algorithm for non-intrusive load monitoring Appl. Energy 2017 10.1016/j.apenergy.2016.10.040 185 331 

  9. Kong A hierarchical hidden Markov model framework for home appliance modeling IEEE Trans. Smart Grid 2016 10.1109/TSG.2016.2626389 9 3079 

  10. Mueller Accurate energy use estimation for nonintrusive load monitoring in systems of known devices IEEE Trans. Smart Grid 2016 10.1109/TSG.2016.2620120 9 2797 

  11. 10.3390/en12081572 Wu, Q., and Wang, F. (2019). Concatenate convolutional neural networks for non-intrusive load monitoring across complex background. Energies, 12. 

  12. 10.3390/en12142804 Kim, J.G., and Lee, B. (2019). Appliance classification by power signal analysis based on multi-feature combination multi-layer LSTM. Energies, 12. 

  13. Du Electric load classification by binary voltage-current trajectory mapping IEEE Trans. Smart Grid 2015 10.1109/TSG.2015.2442225 7 358 

  14. 10.1109/GlobalSIP.2015.7418189 Gao, J., Kara, E.C., Giri, S., and Berges, M. (2015, January 14-16). A feasibility study of automated plug-load identification from high-frequency measurements. Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA. 

  15. Ruyssinck Appliance classification using VI trajectories and convolutional neural networks Energy Build. 2018 10.1016/j.enbuild.2017.09.087 158 32 

  16. 10.1109/EPEC.2018.8598355 Dash, P., and Naik, K. (2018, January 10-11). A very deep one dimensional convolutional neural network (VDOCNN) for appliance power signature classification. Proceedings of the 2018 IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada. 

  17. Chollet, F. (017, January 21-26). Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA. 

  18. 10.3390/en13123117 Puente, C., Palacios, R., González-Arechavala, Y., and Sánchez-Úbeda, E.F. (2020). Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques. Energies, 13. 

  19. Kotsiantis Supervised machine learning: A review of classification techniques Emerg. Artif. Intell. Appl. Comput. Eng. 2007 160 3 

  20. 10.1007/978-3-540-39964-3_62 Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). KNN model-based approach in classification. OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, Springer. 

  21. Gualda Event-based energy disaggregation algorithm for activity monitoring from a single-point sensor IEEE Trans. Instrum. Meas. 2017 10.1109/TIM.2017.2700987 66 2615 

  22. Gopinath Energy management using non-intrusive load monitoring techniques-State-of-the-art and future research directions Sustain. Cities Soc. 2020 10.1016/j.scs.2020.102411 62 102411 

  23. 10.1145/2821650.2821672 Kelly, J., and Knottenbelt, W. (2015, January 4-5). Neural NILM: Deep Neural Networks Applied to Energy Disaggregation. Proceedings of the ACM BuildSys ’15, Seoul, Korea. 

  24. Kelly The UK-DALE Dataset, Domestic Appliance-level Electricity Demand and Whole-house Demand from Five UK Homes Sci. Data 2015 10.1038/sdata.2015.7 2 150007 

  25. 10.1609/aaai.v32i1.11873 Zhang, C., Zhong, M., Wang, Z., Goddard, N., and Sutton, C. (2018, January 2-7). Sequence-to-Point Learning with Neural Networks for Non-Intrusive Load Monitoring. Proceedings of the AAAI ’18, New Orleans, LA, USA. 

  26. 10.1109/SmartGridComm.2017.8340664 Kahl, M., Kriechbaumer, T., Haq, A.U., and Jacobsen, H.A. (2017, January 23-27). Appliance classification across multiple high frequency energy datasets. Proceedings of the 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm), Dresden, Germany. 

  27. Kim, J., and Kim, H. (2016, January 10-13). Classification performance using gated recurrent unit recurrent neural network on energy disaggregation. Proceedings of the 2016 IEEE International Conference on Machine Learning and Cybernetics (ICMLC), Jeju, Korea. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로