최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computers & industrial engineering, v.157, 2021년, pp.107310 -
Jeong, Jihwan , Shin, Hayong
초록이 없습니다.
Belakaria Vol. 32 7825 2019 Max-value entropy search for multi-objective bayesian optimization
Bergstra 2546 2011 Advances in Neural Information Processing Systems Algorithms for hyper-parameter optimization
Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv: 1012.2599.
European Journal of Operational Research Crombecq 214 683 2011 10.1016/j.ejor.2011.05.032 Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling
Computational Statistics and Data Analysis Duchesne 54 858 2010 10.1016/j.csda.2009.11.025 Computing the distribution of quadratic forms: Further comparisons between the liu-tang-zhang approximation and exact methods
INFORMS Journal on Computing Frazier 21 599 2009 10.1287/ijoc.1080.0314 The knowledge-gradient policy for correlated normal beliefs
GPy (2012). GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy.
GPyOpt authors (2016). Gpyopt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt.
REVSTAT Statistical Journal Ha 11 231 2013 An accurate approximation to the distribution of a linear combination of non-central chi-square random variables
Journal of Machine Learning Research Hennig 13 1809 2012 Entropy search for information-efficient global optimization
Hernandez-Lobato 1492 2016 PMLR Predictive entropy search for multi-objective Bayesian optimization
IEEE Transactions on Evolutionary Computation Knowles 10 50 2006 10.1109/TEVC.2005.851274 Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
Journal of Machine Learning Research Krause 9 235 2008 Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
Mathai 1992 Quadratic forms in random variables: Theory and applications
Technometrics McKay 21 239 1979 Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
Močkus 400 1974 Proceedings of the IFIP Technical Conference On bayesian methods for seeking the extremum
Journal of Mechanical Design Picheny 132 2010 10.1115/1.4001873 Adaptive designs of experiments for accurate approximation of a target region
Picheny Vol. 29 1435 2016 Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian
Technometrics Ranjan 50 527 2008 10.1198/004017008000000541 Sequential Experiment Design for Contour Estimation from Complex Computer Codes
Rasmussen 2006 Gaussian processes for machine learning
INFORMS Journal on Computing Regis 19 497 2007 10.1287/ijoc.1060.0182 A stochastic radial basis function method for the global optimization of expensive functions
Snoek Vol. 25 2951 2012 Practical bayesian optimization of machine learning algorithms
Srinivas, N., Krause, A., Kakade, M. S., & Seeger, M. (2010). Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv: 0912.3995.
Surjanovic, S., & Bingham, D. (2017). Virtual library of simulation experiments: Test functions and datasets. https://www.sfu.ca/ssurjano/optimization.html.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.