최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Calculus of variations and partial differential equations, v.60 no.3, 2021년, pp.93 -
Kołodziej, Sławomir , Nguyen, Ngoc Cuong
AbstractWe prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Ampère equation on a compact Hermitian manifold for a very general measure on the right hand side. We admit measures dominated by capacity in a certain manner, in particular, moderate measures studied ...
Acta Math. E Bedford 149 1 1982 10.1007/BF02392348 Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1-40 (1982)
Ark. Mat. S Benelkourchi 43 85 2005 10.1007/BF02383612 Benelkourchi, S., Jennane, B., Zeriahi, A.: Polya’s inequalities, global uniform integrability and the size of plurisubharmonic lemniscates. Ark. Mat. 43, 85-112 (2005)
Commun. Pure Appl. Math. L Caffarelli 38 2 209 1985 10.1002/cpa.3160380206 Caffarelli, L., Kohn, J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Commun. Pure Appl. Math. 38(2), 209-252 (1985)
Acta Math. U Cegrell 180 2 187 1998 10.1007/BF02392899 Cegrell, U.: Pluricomplex energy. Acta Math. 180(2), 187-217 (1998)
Bull. Sci. Math. P Cherrier 111 2 343 1987 Cherrier, P.: Équations de Monge-Ampère sur les variétés Hermitiennes compactes. Bull. Sci. Math. 111(2), 343-385 (1987)
Mem. Soc. Math. France (N.S.) J-P Demailly 19 1 1985 Demailly, J.-P.: Measures de Monge-Ampère et caractérisation géométrique des variétés algébraiques affines. Mem. Soc. Math. France (N.S.) 19, 1-124 (1985)
JEMS J-P Demailly 16 4 619 2014 10.4171/JEMS/442 Demailly, J.-P., Dinew, S., Guedj, V., Hiep, P., Kołodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge-Ampère equations. JEMS 16(4), 619-647 (2014)
Ann. Fac. Sci. Toulouse Math. (6) S Dinew 25 1 91 2016 10.5802/afst.1488 Dinew, S.: Pluripotential theory on compact Hermitian manifolds. Ann. Fac. Sci. Toulouse Math. (6) 25(1), 91-139 (2016)
S Dinew 2019 Lectures on Pluripotential Theory on Compact Hermitian Manifolds. Lecture Notes in Mathematics. Complex Non-Kähler Geometry Dinew, S.: Lectures on Pluripotential Theory on Compact Hermitian Manifolds. Lecture Notes in Mathematics. Complex Non-Kähler Geometry, vol. 2246. Springer, Berlin (2019)
S Dinew 2012 Pluripotential Estimates on Compact Hermitian Manifolds. Advanced Lectures in Mathematics Dinew, S., Kołodziej, S.: Pluripotential Estimates on Compact Hermitian Manifolds. Advanced Lectures in Mathematics, vol. 21. International Press, Boston (2012)
J. Differ. Geom. T-C Dinh 84 3 465 2010 10.4310/jdg/1279114298 Dinh, T.-C., Nguyen, V.-A., Sibony, N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84(3), 465-488 (2010)
J. Funct. Anal. T-C Dinh 266 1 67 2014 10.1016/j.jfa.2013.08.026 Dinh, T.-C., Nguyen, V.-A.: Characterization of Monge-Ampère measures with Hölder continuous potentials. J. Funct. Anal. 266(1), 67-84 (2014)
J. Funct. Anal. S Fang 271 11 3162 2016 10.1016/j.jfa.2016.08.013 Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern-Ricci flow. J. Funct. Anal. 271(11), 3162-3185 (2016)
Commun. Anal. Geom. M Gill 19 277 2011 10.4310/CAG.2011.v19.n2.a2 Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19, 277-303 (2011)
Gill, M.: The Chern-Ricci flow on smooth minimal models of general type. Preprint arXiv: 1307.0066v1
J. Funct. Anal. V Guedj 250 2 442 2007 10.1016/j.jfa.2007.04.018 Guedj, V., Zeriahi, A.: The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442-482 (2007)
Acta Math. S Kołodziej 180 69 1998 10.1007/BF02392879 Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180, 69-117 (1998)
Indiana Univ. Math. J. S Kołodziej 52 667 2003 10.1512/iumj.2003.52.2220 Kołodziej, S.: The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, 667-686 (2003)
Mem. Am. Math. Soc. S Kołodziej 178 64 2005 Kołodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178, 64 (2005)
Math. Ann. S Kołodziej 342 379 2008 10.1007/s00208-008-0239-y Kołodziej, S.: Hölder continuity of solutions to the complex Monge-Ampère equation with the right hand side in $$L^p$$. The case of compact Kähler manifolds. Math. Ann. 342, 379-386 (2008)
10.1090/conm/644/12775 Kołodziej,S., Nguyen, N.-C.: Weak Solutions to the Complex Monge-Ampère Equation on Hermitian Manifolds. Analysis, Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong, Contemporary Mathematics, vol. 644. American Mathematical Society, Providence, pp 141-158 (2015)
Compos. Math. S Kołodziej 152 11 2221 2016 10.1112/S0010437X16007417 Kołodziej, S., Nguyen, N.C.: Weak solutions of complex Hessian equations on compact Hermitian manifolds. Compos. Math. 152(11), 2221-2248 (2016)
Adv. Math. S Kołodziej 346 264 2019 10.1016/j.aim.2019.02.004 Kołodziej, S., Nguyen, N.C.: Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds. Adv. Math. 346, 264-304 (2019)
Acta Math. Vietnam S Kołodziej 45 83 2020 10.1007/s40306-019-00347-0 Kołodziej, S., Nguyen, N.C.: A remark on the continuous subsolution problem for the complex Monge-Ampère equation. Acta Math. Vietnam 45, 83-91 (2020)
10.4310/PAMQ.2021.v17.n3.a6 Kołodziej, S., Tosatti, V.: Morse-type integrals on non-Kähler manifolds. arXiv:1906.09614. To appear in Pure Appl. Math. Q (2021)
Lu, C.-H., Phung, T.-T., To, T.-D.: Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact Hermitian manifolds. arXiv: 2003.08417. to appear in Annales de l’Institut Fourier
Math. Res. Lett. X Nie 24 6 1819 2017 10.4310/MRL.2017.v24.n6.a13 Nie, X.: Weak solution of the Chern-Ricci flow on compact complex surfaces. Math. Res. Lett. 24(6), 1819-1844 (2017)
Adv. Math. N-C Nguyen 286 240 2016 10.1016/j.aim.2015.09.009 Nguyen, N.-C.: The complex Monge-Ampère type equation on compact Hermitian manifolds and applications. Adv. Math. 286, 240-285 (2016)
10.1007/s00526-017-1297-3 Nguyen, N.-C.: On the Hölder continuous subsolution problem for the complex Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 57(1), Art. 8, 15 pp (2018)
Anal. PDE N-C Nguyen 13 2 435 2020 10.2140/apde.2020.13.435 Nguyen, N.-C.: On the Hölder continuous subsolution problem for the complex Monge-Ampère equation. II. Anal. PDE 13(2), 435-453 (2020)
Ann. Inst. Fourier (Grenoble) H-H Pham 60 5 1857 2010 10.5802/aif.2574 Pham, H.-H.: Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. Ann. Inst. Fourier (Grenoble) 60(5), 1857-1869 (2010)
J. Am. Math. Soc. V Tosatti 23 1187 2010 10.1090/S0894-0347-2010-00673-X Tosatti, V., Weinkove, B.: The complex Monge-Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23, 1187-1195 (2010)
Proc. Am. Math. Soc. V Tosatti 140 11 4003 2012 10.1090/S0002-9939-2012-11206-7 Tosatti, V., Weinkove, B.: Plurisubharmonic functions and nef classes on complex manifolds. Proc. Am. Math. Soc. 140(11), 4003-4010 (2012)
Compos. Math. V Tosatti 149 12 2101 2013 10.1112/S0010437X13007471 Tosatti, V., Weinkove, B.: The Chern-Ricci flow on complex surfaces. Compos. Math. 149(12), 2101-2138 (2013)
J. Differ. Geom. V Tosatti 99 125 2015 10.4310/jdg/1418345539 Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99, 125-163 (2015)
Math. Ann. V Tosatti 362 1223 2015 10.1007/s00208-014-1160-1 Tosatti, V., Weinkove, B., Yang, W.: Collapsing of the Chern-Ricci flow on elliptic surfaces. Math. Ann. 362, 1223-1271 (2015)
Math. Ann. D Tô 372 1-2 699 2018 10.1007/s00208-017-1574-7 Tô, D.: Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds. Math. Ann. 372(1-2), 699-741 (2018)
Math. Ann. D-V Vu 372 1-2 321 2018 10.1007/s00208-017-1565-8 Vu, D.-V.: Complex Monge-Ampère equation for measures supported on real submanifolds. Math. Ann. 372(1-2), 321-367 (2018)
Trans. Am. Math. Soc. D-V Vu 373 3 2229 2020 10.1090/tran/7994 Vu, D.-V.: Equilibrium measures of meromorphic self-maps on non-Kähler manifolds. Trans. Am. Math. Soc. 373(3), 2229-2250 (2020)
Commun. Pure Appl. Math. S-T Yau 31 339 1978 10.1002/cpa.3160310304 Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Commun. Pure Appl. Math. 31, 339-411 (1978)
Can. J. Math. T Zheng 69 1 220 2017 10.4153/CJM-2015-053-0 Zheng, T.: The Chern-Ricci flow on Oeljeklaus-Toma manifolds. Can. J. Math. 69(1), 220-240 (2017)
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.