$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Continuous solutions to Monge-Ampère equations on Hermitian manifolds for measures dominated by capacity 원문보기

Calculus of variations and partial differential equations, v.60 no.3, 2021년, pp.93 -   

Kołodziej, Sławomir ,  Nguyen, Ngoc Cuong

Abstract AI-Helper 아이콘AI-Helper

AbstractWe prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Ampère equation on a compact Hermitian manifold for a very general measure on the right hand side. We admit measures dominated by capacity in a certain manner, in particular, moderate measures studied ...

참고문헌 (45)

  1. Acta Math. E Bedford 149 1 1982 10.1007/BF02392348 Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1-40 (1982) 

  2. Ark. Mat. S Benelkourchi 43 85 2005 10.1007/BF02383612 Benelkourchi, S., Jennane, B., Zeriahi, A.: Polya’s inequalities, global uniform integrability and the size of plurisubharmonic lemniscates. Ark. Mat. 43, 85-112 (2005) 

  3. Commun. Pure Appl. Math. L Caffarelli 38 2 209 1985 10.1002/cpa.3160380206 Caffarelli, L., Kohn, J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Commun. Pure Appl. Math. 38(2), 209-252 (1985) 

  4. Acta Math. U Cegrell 180 2 187 1998 10.1007/BF02392899 Cegrell, U.: Pluricomplex energy. Acta Math. 180(2), 187-217 (1998) 

  5. Bull. Sci. Math. P Cherrier 111 2 343 1987 Cherrier, P.: Équations de Monge-Ampère sur les variétés Hermitiennes compactes. Bull. Sci. Math. 111(2), 343-385 (1987) 

  6. Mem. Soc. Math. France (N.S.) J-P Demailly 19 1 1985 Demailly, J.-P.: Measures de Monge-Ampère et caractérisation géométrique des variétés algébraiques affines. Mem. Soc. Math. France (N.S.) 19, 1-124 (1985) 

  7. JEMS J-P Demailly 16 4 619 2014 10.4171/JEMS/442 Demailly, J.-P., Dinew, S., Guedj, V., Hiep, P., Kołodziej, S., Zeriahi, A.: Hölder continuous solutions to Monge-Ampère equations. JEMS 16(4), 619-647 (2014) 

  8. Ann. Inst. Fourier (Grenoble) E Di Nezza 68 7 2965 2018 10.5802/aif.3233 Di Nezza, E., Favre, C.: Regularity of push-forward of Monge-Ampère measures. Ann. Inst. Fourier (Grenoble) 68(7), 2965-2979 (2018) 

  9. Ann. Fac. Sci. Toulouse Math. (6) S Dinew 25 1 91 2016 10.5802/afst.1488 Dinew, S.: Pluripotential theory on compact Hermitian manifolds. Ann. Fac. Sci. Toulouse Math. (6) 25(1), 91-139 (2016) 

  10. S Dinew 2019 Lectures on Pluripotential Theory on Compact Hermitian Manifolds. Lecture Notes in Mathematics. Complex Non-Kähler Geometry Dinew, S.: Lectures on Pluripotential Theory on Compact Hermitian Manifolds. Lecture Notes in Mathematics. Complex Non-Kähler Geometry, vol. 2246. Springer, Berlin (2019) 

  11. S Dinew 2012 Pluripotential Estimates on Compact Hermitian Manifolds. Advanced Lectures in Mathematics Dinew, S., Kołodziej, S.: Pluripotential Estimates on Compact Hermitian Manifolds. Advanced Lectures in Mathematics, vol. 21. International Press, Boston (2012) 

  12. J. Differ. Geom. T-C Dinh 84 3 465 2010 10.4310/jdg/1279114298 Dinh, T.-C., Nguyen, V.-A., Sibony, N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84(3), 465-488 (2010) 

  13. J. Funct. Anal. T-C Dinh 266 1 67 2014 10.1016/j.jfa.2013.08.026 Dinh, T.-C., Nguyen, V.-A.: Characterization of Monge-Ampère measures with Hölder continuous potentials. J. Funct. Anal. 266(1), 67-84 (2014) 

  14. J. Funct. Anal. S Fang 271 11 3162 2016 10.1016/j.jfa.2016.08.013 Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern-Ricci flow. J. Funct. Anal. 271(11), 3162-3185 (2016) 

  15. Commun. Anal. Geom. M Gill 19 277 2011 10.4310/CAG.2011.v19.n2.a2 Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19, 277-303 (2011) 

  16. Gill, M.: The Chern-Ricci flow on smooth minimal models of general type. Preprint arXiv: 1307.0066v1 

  17. Annales de l’Institut Fourier V Guedj 68 7 2819 2018 10.5802/aif.3227 Guedj, V., Lu, H.-C., Zeriahi, A.: Stability of solutions to complex Monge-Ampère flows. Annales de l’Institut Fourier 68(7), 2819-2836 (2018) 

  18. J. Funct. Anal. V Guedj 250 2 442 2007 10.1016/j.jfa.2007.04.018 Guedj, V., Zeriahi, A.: The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442-482 (2007) 

  19. Ann. Polon. Math. S Kołodziej 65 11 1996 10.4064/ap-65-1-11-21 Kołodziej, S.: Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math. 65, 11-21 (1996) 

  20. Acta Math. S Kołodziej 180 69 1998 10.1007/BF02392879 Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180, 69-117 (1998) 

  21. Indiana Univ. Math. J. S Kołodziej 52 667 2003 10.1512/iumj.2003.52.2220 Kołodziej, S.: The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, 667-686 (2003) 

  22. Mem. Am. Math. Soc. S Kołodziej 178 64 2005 Kołodziej, S.: The complex Monge-Ampère equation and pluripotential theory. Mem. Am. Math. Soc. 178, 64 (2005) 

  23. Math. Ann. S Kołodziej 342 379 2008 10.1007/s00208-008-0239-y Kołodziej, S.: Hölder continuity of solutions to the complex Monge-Ampère equation with the right hand side in $$L^p$$. The case of compact Kähler manifolds. Math. Ann. 342, 379-386 (2008) 

  24. 10.1090/conm/644/12775 Kołodziej,S., Nguyen, N.-C.: Weak Solutions to the Complex Monge-Ampère Equation on Hermitian Manifolds. Analysis, Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong, Contemporary Mathematics, vol. 644. American Mathematical Society, Providence, pp 141-158 (2015) 

  25. Compos. Math. S Kołodziej 152 11 2221 2016 10.1112/S0010437X16007417 Kołodziej, S., Nguyen, N.C.: Weak solutions of complex Hessian equations on compact Hermitian manifolds. Compos. Math. 152(11), 2221-2248 (2016) 

  26. Ann. Inst. Fourier (Grenoble) S Kołodziej 68 7 2951 2018 10.5802/aif.3232 Kołodziej, S., Nguyen, N.C.: Hölder continuous solutions of the Monge-Ampère equation on compact Hermitian manifolds. Ann. Inst. Fourier (Grenoble) 68(7), 2951-2964 (2018) 

  27. Adv. Math. S Kołodziej 346 264 2019 10.1016/j.aim.2019.02.004 Kołodziej, S., Nguyen, N.C.: Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds. Adv. Math. 346, 264-304 (2019) 

  28. Acta Math. Vietnam S Kołodziej 45 83 2020 10.1007/s40306-019-00347-0 Kołodziej, S., Nguyen, N.C.: A remark on the continuous subsolution problem for the complex Monge-Ampère equation. Acta Math. Vietnam 45, 83-91 (2020) 

  29. 10.4310/PAMQ.2021.v17.n3.a6 Kołodziej, S., Tosatti, V.: Morse-type integrals on non-Kähler manifolds. arXiv:1906.09614. To appear in Pure Appl. Math. Q (2021) 

  30. Lu, C.-H., Phung, T.-T., To, T.-D.: Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact Hermitian manifolds. arXiv: 2003.08417. to appear in Annales de l’Institut Fourier 

  31. Math. Res. Lett. X Nie 24 6 1819 2017 10.4310/MRL.2017.v24.n6.a13 Nie, X.: Weak solution of the Chern-Ricci flow on compact complex surfaces. Math. Res. Lett. 24(6), 1819-1844 (2017) 

  32. Adv. Math. N-C Nguyen 286 240 2016 10.1016/j.aim.2015.09.009 Nguyen, N.-C.: The complex Monge-Ampère type equation on compact Hermitian manifolds and applications. Adv. Math. 286, 240-285 (2016) 

  33. 10.1007/s00526-017-1297-3 Nguyen, N.-C.: On the Hölder continuous subsolution problem for the complex Monge-Ampère equation. Calc. Var. Partial Differ. Equ. 57(1), Art. 8, 15 pp (2018) 

  34. Anal. PDE N-C Nguyen 13 2 435 2020 10.2140/apde.2020.13.435 Nguyen, N.-C.: On the Hölder continuous subsolution problem for the complex Monge-Ampère equation. II. Anal. PDE 13(2), 435-453 (2020) 

  35. Ann. Inst. Fourier (Grenoble) H-H Pham 60 5 1857 2010 10.5802/aif.2574 Pham, H.-H.: Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. Ann. Inst. Fourier (Grenoble) 60(5), 1857-1869 (2010) 

  36. J. Am. Math. Soc. V Tosatti 23 1187 2010 10.1090/S0894-0347-2010-00673-X Tosatti, V., Weinkove, B.: The complex Monge-Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23, 1187-1195 (2010) 

  37. Proc. Am. Math. Soc. V Tosatti 140 11 4003 2012 10.1090/S0002-9939-2012-11206-7 Tosatti, V., Weinkove, B.: Plurisubharmonic functions and nef classes on complex manifolds. Proc. Am. Math. Soc. 140(11), 4003-4010 (2012) 

  38. Compos. Math. V Tosatti 149 12 2101 2013 10.1112/S0010437X13007471 Tosatti, V., Weinkove, B.: The Chern-Ricci flow on complex surfaces. Compos. Math. 149(12), 2101-2138 (2013) 

  39. J. Differ. Geom. V Tosatti 99 125 2015 10.4310/jdg/1418345539 Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99, 125-163 (2015) 

  40. Math. Ann. V Tosatti 362 1223 2015 10.1007/s00208-014-1160-1 Tosatti, V., Weinkove, B., Yang, W.: Collapsing of the Chern-Ricci flow on elliptic surfaces. Math. Ann. 362, 1223-1271 (2015) 

  41. Math. Ann. D Tô 372 1-2 699 2018 10.1007/s00208-017-1574-7 Tô, D.: Regularizing properties of complex Monge-Ampère flows II: Hermitian manifolds. Math. Ann. 372(1-2), 699-741 (2018) 

  42. Math. Ann. D-V Vu 372 1-2 321 2018 10.1007/s00208-017-1565-8 Vu, D.-V.: Complex Monge-Ampère equation for measures supported on real submanifolds. Math. Ann. 372(1-2), 321-367 (2018) 

  43. Trans. Am. Math. Soc. D-V Vu 373 3 2229 2020 10.1090/tran/7994 Vu, D.-V.: Equilibrium measures of meromorphic self-maps on non-Kähler manifolds. Trans. Am. Math. Soc. 373(3), 2229-2250 (2020) 

  44. Commun. Pure Appl. Math. S-T Yau 31 339 1978 10.1002/cpa.3160310304 Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Commun. Pure Appl. Math. 31, 339-411 (1978) 

  45. Can. J. Math. T Zheng 69 1 220 2017 10.4153/CJM-2015-053-0 Zheng, T.: The Chern-Ricci flow on Oeljeklaus-Toma manifolds. Can. J. Math. 69(1), 220-240 (2017) 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로