$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity 원문보기

Nature communications, v.12 no.1, 2021년, pp.3435 -   

Park, Seongjun (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Yuk, Hyunwoo (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Zhao, Ruike (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Yim, Yeong Shin (McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Woldeghebriel, Eyob W. (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Kang, Jeewoo (Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Canales, Andres (Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Fink, Yoel (Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Choi, Gloria B. (Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA USA) ,  Zhao, Xuanhe (Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambrid) ,  Anikeeva, Polina

Abstract AI-Helper 아이콘AI-Helper

To understand the underlying mechanisms of progressive neurophysiological phenomena, neural interfaces should interact bi-directionally with brain circuits over extended periods of time. However, such interfaces remain limited by the foreign body response that stems from the chemo-mechanical mismatc...

참고문헌 (43)

  1. 1. Gradinaru V Mogri M Thompson KR Henderson JM Deisseroth K Optical deconstruction of parkinsonian neural circuitry Science 2009 324 354 359 10.1126/science.1167093 19299587 

  2. 2. Tye KM Deisseroth K Optogenetic investigation of neural circuits underlying brain disease in animal models Nat. Rev. Neurosci. 2012 13 251 266 10.1038/nrn3171 22430017 

  3. 3. Polikov VS Tresco PA Reichert WM Response of brain tissue to chronically implanted neural electrodes J. Neurosci. Methods 2005 148 1 18 10.1016/j.jneumeth.2005.08.015 16198003 

  4. 4. Ward MP Rajdev P Ellison C Irazoqui PP Toward a comparison of microelectrodes for acute and chronic recordings Brain Res. 2009 1282 183 200 10.1016/j.brainres.2009.05.052 19486899 

  5. 5. Karumbaiah L Relationship between intracortical electrode design and chronic recording function Biomaterials 2013 34 8061 8074 10.1016/j.biomaterials.2013.07.016 23891081 

  6. 6. Marin C Fernández E Biocompatibility of intracortical microelectrodes: current status and future prospects Front. Neuroeng. 2010 3 8 10.3389/fneng.2010.00008 20577634 

  7. 7. Jeong JW Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics Cell 2015 162 662 674 10.1016/j.cell.2015.06.058 26189679 

  8. 8. Liu J Syringe-injectable electronics Nat. Nanotechnol. 2015 10 629 636 10.1038/nnano.2015.115 26053995 

  9. 9. Xie C Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes Nat. Mater. 2015 14 1286 10.1038/nmat4427 26436341 

  10. 10. Minev IR Electronic dura mater for long-term multimodal neural interfaces Science 2015 347 159 163 10.1126/science.1260318 25574019 

  11. 11. Park SI Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics Nat. Biotechnol. 2015 33 1280 1286 10.1038/nbt.3415 26551059 

  12. 12. Park S One-step optogenetics with multifunctional flexible polymer fibers Nat. Neurosci. 2017 20 612 10.1038/nn.4510 28218915 

  13. 13. Park SI Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics Nat. Biotechnol. 2015 33 1280 10.1038/nbt.3415 26551059 

  14. 14. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1 , 1–14 (2016). 

  15. 15. Lee KY Mooney DJ Hydrogels for tissue engineering Chem. Rev. 2001 101 1869 1880 10.1021/cr000108x 11710233 

  16. 16. Keplinger C Stretchable, transparent, ionic conductors Science 2013 341 984 987 10.1126/science.1240228 23990555 

  17. 17. Yuk H Zhang T Parada GA Liu X Zhao X Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures Nat. Commun. 2016 7 12028 10.1038/ncomms12028 27345380 

  18. 18. Choi M Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo Nat. Photonics 2013 7 987 10.1038/nphoton.2013.278 25346777 

  19. 19. Choi M Humar M Kim S Yun SH Step‐index optical fiber made of biocompatible hydrogels Adv. Mater. 2015 27 4081 4086 10.1002/adma.201501603 26045317 

  20. 20. Abidian MR Martin DC Multifunctional nanobiomaterials for neural interfaces Adv. Funct. Mater. 2009 19 573 585 10.1002/adfm.200801473 

  21. 21. Spencer KC Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants Sci. Rep. 2017 7 1952 10.1038/s41598-017-02107-2 28512291 

  22. 22. Yuk H Zhang T Lin S Parada GA Zhao X Tough bonding of hydrogels to diverse non-porous surfaces Nat. Mater. 2016 15 190 10.1038/nmat4463 26552058 

  23. 23. Sun J-Y Highly stretchable and tough hydrogels Nature 2012 489 133 10.1038/nature11409 22955625 

  24. 24. Darnell MC Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels Biomaterials 2013 34 8042 8048 10.1016/j.biomaterials.2013.06.061 23896005 

  25. 25. VanDelinder V Simple, benign, aqueous-based amination of polycarbonate surfaces ACS Appl. Mater. Interfaces 2015 7 5643 5649 10.1021/am508797h 25695347 

  26. 26. Cha C Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue Angew. Chm. Int. Ed. 2013 125 7087 7090 10.1002/ange.201302925 

  27. 27. Buxboim A How deeply cells feel: methods for thin gels J. Phys. Condens. Matter 2010 22 194116 10.1088/0953-8984/22/19/194116 20454525 

  28. 28. Richter A A simple implantation method for flexible, multisite microelectrodes into rat brains Front. Neuroeng. 2013 6 6 10.3389/fneng.2013.00006 23898266 

  29. 29. Luan L Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration Sci. Adv. 2017 3 e1601966 10.1126/sciadv.1601966 28246640 

  30. 30. Takeuchi S Ziegler D Yoshida Y Mabuchi K Suzuki T Parylene flexible neural probes integrated with microfluidic channels Lab Chip 2005 5 519 523 10.1039/b417497f 15856088 

  31. 31. Shoffstall, A. J. et al. A mosquito inspired strategy to implant microprobes into the brain. Sci. Rep. 8 , 1–10 (2018). 

  32. 32. Simon MJ Lliff JJ Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative neurovascular and neuroinflammatory diseas Biochim. Biophys. Acta 2016 3 442 451 10.1016/j.bbadis.2015.10.014 

  33. 33. Subbaroyan, J. et al. A finite-element model of the mechacnial effect of implantable microelectrodes in the cerebral cortex. J. Neural. Eng. 2 , 103 (2005). 

  34. 34. Grill WM Norman SE Bellamkonda RV Implanted neural interfaces: biochallenges and engineered solutions Annu. Rev. Biomed. Eng. 2009 11 1 24 10.1146/annurev-bioeng-061008-124927 19400710 

  35. 35. Felix-Ortiz AC BLA to vHPC inputs modulate anxiety-related behaviors Neuron 2013 79 658 664 10.1016/j.neuron.2013.06.016 23972595 

  36. 36. Fu T-M Stable long-term chronic brain mapping at the single-neuron level Nat. Methods 2016 13 875 10.1038/nmeth.3969 27571550 

  37. 37. Kolarcik CL In vivo effects of L1 coating on inflammation and neuronal health at the electrode–tissue interface in rat spinal cord and dorsal root ganglion Acta Biomater. 2012 8 3561 3575 10.1016/j.actbio.2012.06.034 22750248 

  38. 38. Taub AH Hogri R Magal A Mintz M Shacham‐Diamand Y Bioactive anti‐inflammatory coating for chronic neural electrodes J. Biomed. Mater. Res. A 2012 100 1854 1858 10.1002/jbm.a.34152 22488754 

  39. 39. Winter JO Cogan SF Rizzo JF III Neurotrophin‐eluting hydrogel coatings for neural stimulating electrodes J. Biomed. Mater. Res. B 2007 81 551 563 10.1002/jbm.b.30696 

  40. 40. Kang S-K Bioresorbable silicon electronic sensors for the brain Nature 2016 530 71 10.1038/nature16492 26779949 

  41. 41. Fu R Implantable and biodegradable poly (l‐lactic acid) fibers for optical neural interfaces Adv. Opt. Mater. 2018 6 1700941 10.1002/adom.201700941 

  42. 42. Patel PR Chronic in vivo stability assessment of carbon fiber microelectrode arrays J. Neural Eng. 2016 13 066002 10.1088/1741-2560/13/6/066002 27705958 

  43. 43. Hong G A method for single-neuron chronic recording from the retina in awake mice Science 2018 360 1447 1451 10.1126/science.aas9160 29954976 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로