$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Facet-Dependent Mn Doping on Shaped Co3O4 Crystals for Catalytic Oxidation

ACS catalysis, v.11, 2021년, pp.11066 - 11074  

Bae, Junemin (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) ,  Shin, Dongjae (Department of Chemical Engineering , Pohang University of Science and Technology , Pohang , Gyeongbuk 37673 , South Korea) ,  Jeong, Hojin (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) ,  Choe, Chanyeong (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) ,  Choi, Yunji (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea) ,  Han, Jeong Woo (Department of Chemical Engineering , Pohang University of Science and Technology , Pohang , Gyeongbuk 37673 , South Korea) ,  Lee, Hyunjoo

Abstract AI-Helper 아이콘AI-Helper

Doping other metals is known as a facile strategy to improve the catalytic activity of metal oxide catalysts. However, the doping behavior heavily depends on the surface structure of the host metal oxide, possibly leading to different catalytic properties. Here, Mn was doped onto Co3O4 cubes or octa...

Keyword

참고문헌 (56)

  1. Royer, Sébastien, Duprez, Daniel. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem, vol.3, no.1, 24-65.

  2. Liotta, Leonarda Francesca, Wu, Hongjing, Pantaleo, Giuseppe, Venezia, Anna Maria. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catalysis science & technology, vol.3, no.12, 3085-.

  3. Yu, Yunbo, Takei, Takashi, Ohashi, Hironori, He, Hong, Zhang, Xiuli, Haruta, Masatake. Pretreatments of Co3O4 at moderate temperature for CO oxidation at −80°C. Journal of catalysis, vol.267, no.2, 121-128.

  4. Xie, Xiaowei, Li, Yong, Liu, Zhi-Quan, Haruta, Masatake, Shen, Wenjie. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature, vol.458, no.7239, 746-749.

  5. Cai, Yafeng, Xu, Jia, Guo, Yun, Liu, Jingyue. Ultrathin, Polycrystalline, Two-Dimensional Co3O4 for Low-Temperature CO Oxidation. ACS catalysis, vol.9, no.3, 2558-2567.

  6. Ma, Lei, Seo, Chang Yup, Chen, Xiaoyin, Sun, Kai, Schwank, Johannes W.. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust. Applied catalysis. B, Environmental, vol.222, 44-58.

  7. Bae, Junemin, Shin, Dongjae, Jeong, Hojin, Kim, Beom-Sik, Han, Jeong Woo, Lee, Hyunjoo. Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation. ACS catalysis, vol.9, no.11, 10093-10100.

  8. Ren, Zheng, Botu, Venkatesh, Wang, Sibo, Meng, Yongtao, Song, Wenqiao, Guo, Yanbing, Ramprasad, Ramamurthy, Suib, Steven L., Gao, Pu‐Xian. Monolithically Integrated Spinel MxCo3−xO4 (M=Co, Ni, Zn) Nanoarray Catalysts: Scalable Synthesis and Cation Manipulation for Tunable Low‐Temperature CH4 and CO Oxidation. Angewandte Chemie. international edition, vol.53, no.28, 7223-7227.

  9. Ren, Z., Wu, Z., Song, W., Xiao, W., Guo, Y., Ding, J., Suib, S.L., Gao, P.X.. Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Applied catalysis. B, Environmental, vol.180, 150-160.

  10. Lou, Yang, Ma, Jian, Cao, Xiaoming, Wang, Li, Dai, Qiguang, Zhao, Zhenyang, Cai, Yafeng, Zhan, Wangcheng, Guo, Yanglong, Hu, P., Lu, Guanzhong, Guo, Yun. Promoting Effects of In2O3 on Co3O4 for CO Oxidation: Tuning O2 Activation and CO Adsorption Strength Simultaneously. ACS catalysis, vol.4, no.11, 4143-4152.

  11. Zhou, Minjie, Cai, Lili, Bajdich, Michal, García-Melchor, Max, Li, Hong, He, Jiajun, Wilcox, Jennifer, Wu, Weidong, Vojvodic, Aleksandra, Zheng, Xiaolin. Enhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co2+ with Cu2+. ACS catalysis, vol.5, no.8, 4485-4491.

  12. Bae, Junemin, Kim, Beom-Sik, Jeong, Hojin, Lee, Hyunjoo. Mn-doped CuO Co3O4CeO2 catalyst with enhanced activity and durability for hydrocarbon oxidation. Molecular catalysis, vol.467, 9-15.

  13. Tian, Z.Y., Tchoua Ngamou, P.H., Vannier, V., Kohse-Hoinghaus, K., Bahlawane, N.. Catalytic oxidation of VOCs over mixed Co-Mn oxides. Applied catalysis. B, Environmental, vol.117, 125-134.

  14. Li, J., Liang, X., Xu, S., Hao, J.. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Applied catalysis. B, Environmental, vol.90, no.1, 307-312.

  15. Faure faure.benjamin.nχmail.com, B., Alphonse, P.. Co-Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Applied catalysis. B, Environmental, vol.180, 715-725.

  16. Dong, Cui, Qu, Zhenping, Qin, Yuan, Fu, Qiang, Sun, Hongchun, Duan, Xiaoxiao. Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS catalysis, vol.9, no.8, 6698-6710.

  17. Zhao, Qian, Zheng, Yanfei, Song, Chunfeng, Liu, Qingling, Ji, Na, Ma, Degang, Lu, Xuebin. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Applied catalysis. B, Environmental, vol.265, 118552-.

  18. Wu, Enhui, Feng, Xiaoshan, Zheng, Yingbin, Lin, Daifeng, Luo, Yongjin, You, Yufeng, Huang, Baoquan, Qian, Qingrong, Chen, Qinghua. Inverse Coprecipitation Directed Porous Core-Shell Mn-Co-O Catalyst for Efficient Low Temperature Propane Oxidation. ACS sustainable chemistry et engineering, vol.8, no.14, 5787-5798.

  19. Ahn, C.I., Jeong, D.W., Cho, J.M., Na, H.S., Jang, W.J., Roh, H.S., Choi, J.H., Um, S.H., Bae, J.W.. Water gas shift reaction on the Mn-modified ordered mesoporous Co3O4. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.221, 204-211.

  20. Teng, Yonghong, Kusano, Yoshihiro, Azuma, Masaki, Haruta, Masatake, Shimakawa, Yuichi. Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catalysis science & technology, vol.1, no.6, 920-922.

  21. Hu, Linhua, Sun, Keqiang, Peng, Qing, Xu, Boqing, Li, Yadong. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano research, vol.3, no.5, 363-368.

  22. Alvarez, A., Ivanova, S., Centeno, M.A., Odriozola, J.A.. Sub-ambient CO oxidation over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic performance. Applied catalysis. A, General, vol.431, 9-17.

  23. Hu, Linhua, Peng, Qing, Li, Yadong. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. Journal of the American Chemical Society, vol.130, no.48, 16136-16137.

  24. Xue, Wen Juan, Wang, Yu Fei, Li, Peng, Liu, Zhao-Tie, Hao, Zheng Ping, Ma, Chun Yan. Morphology effects of Co3O4 on the catalytic activity of Au/Co3O4 catalysts for complete oxidation of trace ethylene. Catalysis communications, vol.12, no.13, 1265-1268.

  25. Yao, Junxuan, Shi, Hui, Sun, Dekui, Lu, Huaiqian, Hou, Bo, Jia, Litao, Xiao, Yong, Li, Debao. Facet‐Dependent Activity of Co3O4 Catalyst for C3H8 Combustion. ChemCatChem, vol.11, no.22, 5570-5579.

  26. Xiao, Xiaoling, Liu, Xiangfeng, Zhao, Hu, Chen, Dongfeng, Liu, Fengzhen, Xiang, Junhui, Hu, Zhongbo, Li, Yadong. Facile Shape Control of Co3O4 and the Effect of the Crystal Plane on Electrochemical Performance. Advanced materials, vol.24, no.42, 5762-5766.

  27. Kresse, G., Furthmüller, J.. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical review. B, Condensed matter, vol.54, no.16, 11169-11186.

  28. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  29. Monkhorst, Hendrik J., Pack, James D.. Special points for Brillouin-zone integrations. Physical review B, Solid state, vol.13, no.12, 5188-5192.

  30. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., Sutton, A. P.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical review. B, Condensed matter and materials physics, vol.57, no.3, 1505-1509.

  31. Jiang, De-en, Dai, Sheng. The role of low-coordinate oxygen on Co3O4(110) in catalyticCOoxidation. Physical chemistry chemical physics : PCCP, vol.13, no.3, 978-984.

  32. Liu, Juanjuan, Zhang, Shiran, Zhou, Yan, Fung, Victor, Nguyen, Luan, Jiang, De-en, Shen, Wenjie, Fan, Jie, Tao, Franklin Feng. Tuning Catalytic Selectivity of Oxidative Catalysis through Deposition of Nonmetallic Atoms in Surface Lattice of Metal Oxide. ACS catalysis, vol.6, no.7, 4218-4228.

  33. Chen, Zhu, Kronawitter, Coleman X., Koel, Bruce E.. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Physical chemistry chemical physics : PCCP, vol.17, no.43, 29387-29393.

  34. Zasada, Filip, Piskorz, Witold, Stelmachowski, Paweł, Kotarba, Andrzej, Paul, Jean-François, Płociński, Tomasz, Kurzydłowski, Krzysztof J., Sojka, Zbigniew. Periodic DFT and HR-STEM Studies of Surface Structure and Morphology of Cobalt Spinel Nanocrystals. Retrieving 3D Shapes from 2D Images. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.14, 6423-6432.

  35. Liu, Juanjuan, Fung, Victor, Wang, Yong, Du, Kaimin, Zhang, Shiran, Nguyen, Luan, Tang, Yu, Fan, Jie, Jiang, De-en, Tao, Franklin Feng. Promotion of catalytic selectivity on transition metal oxide through restructuring surface lattice. Applied catalysis. B, Environmental, vol.237, 957-969.

  36. Chen, Huiyu, Wang, Jinpeng, Liao, Fan, Han, Xingrong, Zhang, Yanfei, Xu, Chunju, Gao, Li. Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances. Ceramics international, vol.45, no.9, 11876-11882.

  37. Gao, Chao, Meng, Qiangqiang, Zhao, Kun, Yin, Huajie, Wang, Dawei, Guo, Jun, Zhao, Shenlong, Chang, Lin, He, Meng, Li, Qunxiang, Zhao, Huijun, Huang, Xingjiu, Gao, Yan, Tang, Zhiyong. Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible‐Light Photocatalytic Reduction of CO2. Advanced materials, vol.28, no.30, 6485-6490.

  38. Ren, Quanming, Feng, Zhentao, Mo, Shengpeng, Huang, Chunlei, Li, Shujun, Zhang, Weixia, Chen, Limin, Fu, Mingli, Wu, Junliang, Ye, Daiqi. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene. Catalysis today, vol.332, 160-167.

  39. Zhang, Q., Liu, X., Fan, W., Wang, Y.. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H2 stream. Applied catalysis. B, Environmental, vol.102, no.1, 207-214.

  40. Mo, Shengpeng, Zhang, Qi, Sun, Yuhai, Zhang, Mingyuan, Li, Jiaqi, Ren, Quanming, Fu, Mingli, Wu, Junliang, Chen, Limin, Ye, Daiqi. Gaseous CO and toluene co-oxidation over monolithic core-shell Co3O4-based hetero-structured catalysts. Journal of materials chemistry. A, Materials for energy and sustainability, vol.7, no.27, 16197-16210.

  41. Tang, Wenxiang, Xiao, Wen, Wang, Sibo, Ren, Zheng, Ding, Jun, Gao, Pu-Xian. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching: A comparative study with Pt and Pd based catalysts. Applied catalysis. B, Environmental, vol.226, 585-595.

  42. Liu, Xiangwen, Zhou, Kebin, Wang, Lei, Wang, Baoyi, Li, Yadong. Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. Journal of the American Chemical Society, vol.131, no.9, 3140-3141.

  43. Wang, X., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martinez-Arias, A., Fernandez-Garcia, M.. In Situ Studies of the Active Sites for the Water Gas Shift Reaction over Cu−CeO2 Catalysts: Complex Interaction between Metallic Copper and Oxygen Vacancies of Ceria. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.1, 428-434.

  44. Mo, Shengpeng, Li, Shuangde, Ren, Quanming, Zhang, Mingyuan, Sun, Yuhai, Wang, Bangfen, Feng, Zhentao, Zhang, Qi, Chen, Yunfa, Ye, Daiqi. Vertically-aligned Co3O4 arrays on Ni foam as monolithic structured catalysts for CO oxidation: effects of morphological transformation. Nanoscale, vol.10, no.16, 7746-7758.

  45. Bai, B., Arandiyan, H., Li, J.. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Applied catalysis. B, Environmental, vol.142, 677-683.

  46. Zheng, Y., Wang, W., Jiang, D., Zhang, L.. Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chemical engineering journal, vol.284, 21-27.

  47. Zhang, Yangyu, Tan, Zhenni, Wang, Xiuyun, Zhan, Yingying, Xiao, Yihong, Au, Chaktong, Jiang, Lilong. Facile fabrication of Ce-decorated composition-tunable Ce@ZnCo2O4 core-shell microspheres for enhanced catalytic propane combustion. Nanoscale, vol.11, no.11, 4794-4802.

  48. Park, Jung Eun, Park, Eun Duck. Effects of Surface Area of Co-Mn-O Catalysts on the Selective CO Oxidation in H2. Catalysis letters, vol.144, no.4, 607-614.

  49. Binder, Andrew J., Toops, Todd J., Unocic, Raymond R., Parks II, James E., Dai, Sheng. Low‐Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angewandte Chemie. international edition, vol.54, no.45, 13263-13267.

  50. Jeong, Hojin, Bae, Junemin, Han, Jeong Woo, Lee, Hyunjoo. Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO2 Catalysts for CO Oxidation. ACS catalysis, vol.7, no.10, 7097-7105.

  51. Jeong, Hojin, Lee, Geonhee, Kim, Beom-Sik, Bae, Junemin, Han, Jeong Woo, Lee, Hyunjoo. Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. Journal of the American Chemical Society, vol.140, no.30, 9558-9565.

  52. Wang, Hai‐Feng, Kavanagh, Richard, Guo, Yang‐Long, Guo, Yun, Lu, Guan‐Zhong, Hu, P.. Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Low‐Temperature CO Oxidation with Metals. Angewandte Chemie. international edition, vol.51, no.27, 6657-6661.

  53. Luo, T., Vohs, J.M., Gorte, R.J.. An Examination of Sulfur Poisoning on Pd/Ceria Catalysts. Journal of catalysis, vol.210, no.2, 397-404.

  54. Qi, G., Li, W.. NO oxidation to NO2 over manganese-cerium mixed oxides. Catalysis today, vol.258, no.1, 205-213.

  55. Hennings, U., Reimert, R.. Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel cell applications. Applied catalysis. B, Environmental, vol.70, no.1, 498-508.

  56. Chen, Liqiang, Li, Rui, Li, Zhibin, Yuan, Fulong, Niu, Xiaoyu, Zhu, Yujun. Effect of Ni doping in NixMn1−xTi10 (x = 0.1-0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catalysis science & technology, vol.7, no.15, 3243-3257.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로