$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite

ACS catalysis, v.11, 2021년, pp.12220 - 12231  

Lim, Hyun Suk (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea) ,  Kim, Yikyeom (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea) ,  Kang, Dohyung (School of Chemical Engineering , Yeungnam University , 280 Daehak-Ro , Gyeongsan 38541 , Republic of Korea) ,  Lee, Minbeom (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea) ,  Jo, Ayeong (Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-Ro , Daejeon 34141 , Republic of Korea) ,  Lee, Jae W.

Abstract AI-Helper 아이콘AI-Helper

This paper addresses the synergistic effect of binary Ni-Fe sites in double La2NiFeO6 perovskite on low-temperature CO2 conversion to CO in the reverse water-gas shift-chemical looping process. Experimental investigations and DFT calculations proved that, for the reduction of perovskite, the Ni-site...

Keyword

참고문헌 (82)

  1. Lee, Sung Min, Lee, Hyunju, Kim, Junhyeong, Ahn, Sang Hyun, Chang, Suk Tai. All-water-based solution processed Ag nanofilms for highly efficient electrocatalytic reduction of CO2 to CO. Applied catalysis. B, Environmental, vol.259, 118045-.

  2. Zhai, Guangyao, Liu, Yuanyuan, Lei, Longfei, Wang, Jiajia, Wang, Zeyan, Zheng, Zhaoke, Wang, Peng, Cheng, Hefeng, Dai, Ying, Huang, Baibiao. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal-Organic Framework. ACS catalysis, vol.11, no.4, 1988-1994.

  3. Gyamfi, Bright Akwasi, Bein, Murad A., Bekun, Festus Victor. Investigating the nexus between hydroelectricity energy, renewable energy, nonrenewable energy consumption on output: evidence from E7 countries. Environmental science and pollution research international, vol.27, no.20, 25327-25339.

  4. Zhang, Junshe, Yedlapalli, Prasad, Lee, Jae W.. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chemical engineering science, vol.64, no.22, 4732-4736.

  5. Kim, Yun Kon, Kim, Gi Mihn, Lee, Jae W.. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.20, 10919-10927.

  6. Arasto, A., Tsupari, E., Karki, J., Pisila, E., Sorsamaki, L.. Post-combustion capture of CO2 at an integrated steel mill - Part I: Technical concept analysis. International journal of greenhouse gas control, vol.16, 271-277.

  7. Widdicombe, S., Blackford, J.C., Spicer, J.I.. Assessing the environmental consequences of CO2 leakage from geological CCS: Generating evidence to support environmental risk assessment. Marine pollution bulletin, vol.73, no.2, 399-401.

  8. Kang, D., Lee, J.W.. Enhanced methane decomposition over nickel-carbon-B2O3 core-shell catalysts derived from carbon dioxide. Applied catalysis. B, Environmental, vol.186, 41-55.

  9. Byeon, Ayeong, Hatter, C.B., Park, Jae H., Ahn, Chi W., Gogotsi, Yury, Lee, Jae W.. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochimica acta, vol.258, 979-987.

  10. Kang, Dohyung, Lim, Hyun Suk, Lee, Jae W.. Mesoporous Fe2O3-CeO2-Al2O3 Oxygen Carrier for Chemical Looping Dry Reforming with Subsequent Water Splitting. Industrial & engineering chemistry research, vol.59, no.36, 15912-15920.

  11. Wang, Ling-Xiang, Guan, Erjia, Wang, Zhiqiang, Wang, Liang, Gong, Zhongmiao, Cui, Yi, Yang, Zhiyuan, Wang, Chengtao, Zhang, Jian, Meng, Xiangju, Hu, Peijun, Gong, Xue-Qing, Gates, Bruce C., Xiao, Feng-Shou. Dispersed Nickel Boosts Catalysis by Copper in CO2 Hydrogenation. ACS catalysis, vol.10, 9261-9270.

  12. Kang, Dohyung, Lee, Minbeom, Lim, Hyun Suk, Lee, Jae W.. Chemical looping partial oxidation of methane with CO2 utilization on the ceria-enhanced mesoporous Fe2O3 oxygen carrier. Fuel, vol.215, 787-798.

  13. Tu, Chunyan, Nie, Xiaowa, Chen, Jingguang G.. Insight into Acetic Acid Synthesis from the Reaction of CH4 and CO2. ACS catalysis, vol.11, no.6, 3384-3401.

  14. Chang, Qiaowan, Kim, Jeonghyeon, Lee, Ji Hoon, Kattel, Shyam, Chen, Jingguang G., Choi, Sang‐Il, Chen, Zheng. Boosting Activity and Selectivity of CO2 Electroreduction by Pre‐Hydridizing Pd Nanocubes. Small, vol.16, no.49, 2005305-.

  15. Liu, Yumeng, Tian, Dong, Biswas, Akash N., Xie, Zhenhua, Hwang, Sooyeon, Lee, Ji Hoon, Meng, Hong, Chen, Jingguang G.. Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H2 Syngas Production from Electrochemical CO2 Reduction. Angewandte Chemie. international edition, vol.59, no.28, 11345-11348.

  16. Feng, Shuaijun, Zhao, Jie, Bai, Yujie, Liang, Xinxin, Wang, Ting, Wang, Chuanyi. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping. Journal of CO2 utilization, vol.38, 1-9.

  17. Wang, Bing, Wang, Xiaohui, Lu, Lei, Zhou, Chenguang, Xin, Zhenyu, Wang, Jiajia, Ke, Xiao-kang, Sheng, Guodong, Yan, Shicheng, Zou, Zhigang. Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS catalysis, vol.8, no.1, 516-525.

  18. Izumi, Y.. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination chemistry reviews, vol.257, no.1, 171-186.

  19. Furler, Philipp, Scheffe, Jonathan, Gorbar, Michal, Moes, Louis, Vogt, Ulrich, Steinfeld, Aldo. Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System. Energy & fuels : an American Chemical Society journal, vol.26, no.11, 7051-7059.

  20. Riaz, Asim, Tsuzuki, Takuya, Kremer, Felipe, Sattayaporn, Suchinda, Ali, Muhammad Umair, Lipiński, Wojciech, Lowe, Adrian. Structural Rearrangement in LSM Perovskites for Enhanced Syngas Production via Solar Thermochemical Redox Cycles. ACS catalysis, vol.10, 8263-8276.

  21. McDaniel, Anthony H., Miller, Elizabeth C., Arifin, Darwin, Ambrosini, Andrea, Coker, Eric N., O'Hayre, Ryan, Chueh, William C., Tong, Jianhua. Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production. Energy & environmental science, vol.6, no.8, 2424-2428.

  22. Ackermann, Simon, Scheffe, Jonathan R., Steinfeld, Aldo. Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.10, 5216-5225.

  23. Jiang, Qingqing, Tong, Jinhui, Zhou, Guilin, Jiang, Zongxuan, Li, Zhen, Li, Can. Thermochemical CO2 splitting reaction with supported LaxA1−xFeyB1−yO3 (A=Sr, Ce, B=Co, Mn; 0⩽x, y⩽1) perovskite oxides. Solar energy, vol.103, 425-437.

  24. Maiti, Debtanu, Hare, Bryan J., Daza, Yolanda A., Ramos, Adela E., Kuhn, John N., Bhethanabotla, Venkat R.. Earth abundant perovskite oxides for low temperature CO2 conversion. Energy & environmental science, vol.11, no.3, 648-659.

  25. Hare, Bryan. J., Maiti, Debtanu, Daza, Yolanda A., Bhethanabotla, Venkat R., Kuhn, John N.. Enhanced CO2 Conversion to CO by Silica-Supported Perovskite Oxides at Low Temperatures. ACS catalysis, vol.8, no.4, 3021-3029.

  26. Lee, Minbeom, Kim, Yikyeom, Lim, Hyun Suk, Jo, Ayeong, Kang, Dohyung, Lee, Jae W.. Reverse Water-Gas Shift Chemical Looping Using a Core-Shell Structured Perovskite Oxygen Carrier. Energies, vol.13, no.20, 5324-.

  27. Kim, Yikyeom, Lim, Hyun Suk, Lee, Minbeom, Lee, Jae W.. Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization. Catalysis today, vol.368, 86-95.

  28. Hernández Mejía, Carlos, van der Hoeven, Jessi E. S., de Jongh, Petra E., de Jong, Krijn P.. Cobalt-Nickel Nanoparticles Supported on Reducible Oxides as Fischer-Tropsch Catalysts. ACS catalysis, vol.10, 7343-7354.

  29. Ji, Qianqian, Bi, Lei, Zhang, Jintao, Cao, Haijie, Zhao, X. S.. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & environmental science, vol.13, no.5, 1408-1428.

  30. Tian, Chengcheng, Zhang, Haiyan, Zhu, Xiang, Lin, Bo, Liu, Xiaofei, Chen, Hao, Zhang, Yafen, Mullins, David R., Abney, Carter W., Shakouri, Mohsen, Chernikov, Roman, Hu, Yongfeng, Polo-Garzon, Felipe, Wu, Zili, Fung, Victor, Jiang, De-en, Liu, Xiaoming, Chi, Miaofang, Liu Jimmy, Jingyue, Dai, Sheng. A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied catalysis. B, Environmental, vol.261, 118178-.

  31. Lim, Hyun Suk, Lee, Minbeom, Kang, Dohyung, Lee, Jae W.. Role of transition metal in perovskites for enhancing selectivity of methane to syngas. International journal of hydrogen energy, vol.43, no.45, 20580-20590.

  32. Zhang, Li, Xu, Weibin, Wu, Jian, Hu, Yue, Huang, Chuande, Zhu, Yanyan, Tian, Ming, Kang, Yu, Pan, Xiaoli, Su, Yang, Wang, Junhu, Wang, Xiaodong. Identifying the Role of A-Site Cations in Modulating Oxygen Capacity of Iron-Based Perovskite for Enhanced Chemical Looping Methane-to-Syngas Conversion. ACS catalysis, vol.10, 9420-9430.

  33. Lee, Minbeom, Lim, Hyun Suk, Kim, Yikyeom, Lee, Jae W.. Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3. Energy conversion and management, vol.207, 112507-.

  34. Lim, Hyun Suk, Kang, Dohyung, Lee, Jae W.. Phase transition of Fe2O3–NiO to NiFe2O4 in perovskite catalytic particles for enhanced methane chemical looping reforming-decomposition with CO2 conversion. Applied catalysis. B, Environmental, vol.202, 175-183.

  35. Carrillo, Alfonso J., Bork, Alexander H., Moser, Thierry, Sediva, Eva, Hood, Zachary D., Rupp, Jennifer L. M.. Modifying La0.6Sr0.4MnO3 Perovskites with Cr Incorporation for Fast Isothermal CO2‐Splitting Kinetics in Solar‐Driven Thermochemical Cycles. Advanced energy materials, vol.9, no.28, 1803886-.

  36. Daza, Yolanda A., Kent, Ryan A., Yung, Matthew M., Kuhn, John N.. Carbon Dioxide Conversion by Reverse Water–Gas Shift Chemical Looping on Perovskite-Type Oxides. Industrial & engineering chemistry research, vol.53, no.14, 5828-5837.

  37. Meng, Zeshuo, Xu, Jian, Yu, Peixin, Hu, Xiaoying, Wu, Yixian, Zhang, Qi, Li, Yaxin, Qiao, Liang, Zeng, Yi, Tian, Hongwei. Double perovskite La2CoMnO6 hollow spheres prepared by template impregnation for high-performance supercapacitors. Chemical engineering journal, vol.400, 125966-.

  38. Vos, Johannes G., Liu, Zhichao, Speck, Florian D., Perini, Nickson, Fu, Wentian, Cherevko, Serhiy, Koper, Marc T. M.. Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media. ACS catalysis, vol.9, no.9, 8561-8574.

  39. Mei, Xuelei, Xiong, Jing, Wei, Yuechang, Zhang, Yilin, Zhang, Peng, Yu, Qi, Zhao, Zhen, Liu, Jian. High-efficient non-noble metal catalysts of 3D ordered macroporous perovskite-type La2NiB’O6 for soot combustion: Insight into the synergistic effect of binary Ni and B’ sites. Applied catalysis. B, Environmental, vol.275, 119108-.

  40. Gao, Xiaojiao, Jin, Zehua, Hu, Ruisheng, Hu, Jia'nan, Bai, Yaqin, Wang, Pan, Zhang, Jie, Zhao, Chunxiao. Double perovskite anti-supported rare earth oxide catalyst CeO2/La2CoFeO6 for efficient ventilation air methane combustion. Journal of rare earths, vol.39, no.4, 398-408.

  41. J. Phys. Condens. Matter Giannozzi P. 465901 29 2017 10.1088/1361-648X/aa8f79 

  42. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  43. Kresse, G., Joubert, D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review. B, Condensed matter and materials physics, vol.59, no.3, 1758-1775.

  44. Jain, Anubhav, Ong, Shyue Ping, Hautier, Geoffroy, Chen, Wei, Richards, William Davidson, Dacek, Stephen, Cholia, Shreyas, Gunter, Dan, Skinner, David, Ceder, Gerbrand, Persson, Kristin A.. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials, vol.1, no.1, 011002-.

  45. Doyle, Andrew D., Bajdich, Michal, Vojvodic, Aleksandra. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides. Catalysis letters, vol.147, no.6, 1533-1539.

  46. Guo, H., Li, Z. W., Zhao, L., Hu, Z., Chang, C. F., Kuo, C.-Y., Schmidt, W., Piovano, A., Pi, T. W., Sobolev, O., Khomskii, D. I., Tjeng, L. H., Komarek, A. C.. Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO 3. Nature communications, vol.9, no.1, 43-.

  47. Konysheva, Elena, Suard, Emmanuelle, Irvine, John T. S.. Effect of Oxygen Non Stoichiometry and Oxidation State of Transition Elements on High-Temperature Phase Transition in A-Site Deficient La0.95Ni0.6Fe0.4O3−δ Perovskite. Chemistry of materials : a publication of the American Chemical Society, vol.21, no.21, 5307-5318.

  48. McMurdie, Howard F., Morris, Marlene C., Evans, Eloise H., Paretzkin, Boris, Wong-Ng, Winnie, Ettlinger, Lisa, Hubbard, Camden R.. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship. Powder diffraction, vol.1, no.2, 64-77.

  49. Wang, Lei, Maxisch, Thomas, Ceder, Gerbrand. Oxidation energies of transition metal oxides within theGGA+Uframework. Physical review. B, Condensed matter and materials physics, vol.73, no.19, 195107-.

  50. Wang, Meng, Zhao, Tingting, Dong, Xiaolei, Li, Ming, Wang, Haiqian. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane. Applied catalysis. B, Environmental, vol.224, 214-221.

  51. Palakkal, Jasnamol Pezhumkattil, Kaipamangalath, Aswathi, Sankar, Cheriyedath Raj, Varma, Manoj R.. Structural, magnetic, and magnetotransport properties of LaFe0.5Ni0.5O3. Ceramics international, vol.44, no.18, 22401-22405.

  52. Soni, Kavita, Yadav, Ekta, Harisankar, S., Mavani, K.R.. Influence of Ce doping and thickness on the structure and non-Fermi liquid behavior of LaNiO3 thin films. The Journal of physics and chemistry of solids, vol.141, 109398-.

  53. Zhang, Xianhua, Pei, Chunlei, Chang, Xin, Chen, Sai, Liu, Rui, Zhao, Zhi-Jian, Mu, Rentao, Gong, Jinlong. FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2 Splitting. Journal of the American Chemical Society, vol.142, no.26, 11540-11549.

  54. Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S., Muthamizhchelvan, C.. Preparation and properties of NiFe2O4 nanowires. Materials letters, vol.66, no.1, 314-317.

  55. Zhou, Z. H., Xue, J. M., Wang, J., Chan, H. S. O., Yu, T., Shen, Z. X.. NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation. Journal of applied physics, vol.91, no.9, 6015-6020.

  56. Ogale, Abhijit S., Ogale, S. B., Ramesh, R., Venkatesan, T.. Octahedral cation site disorder effects on magnetization in double-perovskite Sr2FeMoO6: Monte Carlo simulation study. Applied physics letters, vol.75, no.4, 537-539.

  57. Hare, Bryan J., Maiti, Debtanu, Meier, Anne J., Bhethanabotla, Venkat R., Kuhn, John N.. CO2 Conversion Performance of Perovskite Oxides Designed with Abundant Metals. Industrial & engineering chemistry research, vol.58, no.28, 12551-12560.

  58. Ramos, Adela E., Maiti, Debtanu, Daza, Yolanda A., Kuhn, John N., Bhethanabotla, Venkat R.. Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catalysis today, vol.338, 52-59.

  59. Daza, Y.A., Maiti, D., Hare, B.J., Bhethanabotla, V.R., Kuhn, J.N.. More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0.75Sr0.25FeO3 perovskite oxides. Surface science, vol.648, 92-99.

  60. Jiang, Q., Zhou, G., Jiang, Z., Li, C.. Thermochemical CO2 splitting reaction with CexM1-xO2-δ (M=Ti4+, Sn4+, Hf4+, Zr4+, La3+, Y3+ and Sm3+) solid solutions. Solar energy, vol.99, 55-66.

  61. Bhosale, Rahul R., Kumar, Anand, AlMomani, Fares, Ghosh, Ujjal, Sutar, Parag, Takalkar, Gorakshnath, Ashok, Anchu, Alxneit, Ivo. Effectiveness of Ni incorporation in iron oxide crystal structure towards thermochemical CO2 splitting reaction. Ceramics international, vol.43, no.6, 5150-5155.

  62. Tseng, I.-H., Chang, W.-C., Wu, J.C.S.. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied catalysis. B, Environmental, vol.37, no.1, 37-48.

  63. Liu, Y., Huang, B., Dai, Y., Zhang, X., Qin, X., Jiang, M., Whangbo, M.H.. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis communications, vol.11, no.3, 210-213.

  64. Li, X., Pan, H., Li, W., Zhuang, Z.. Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Applied catalysis. A, General, vol.413, 103-108.

  65. Shafiefarhood, Arya, Galinsky, Nathan, Huang, Yan, Chen, Yanguang, Li, Fanxing. Fe2O3@LaxSr1−xFeO3 Core-Shell Redox Catalyst for Methane Partial Oxidation. ChemCatChem, vol.6, no.3, 790-799.

  66. Huang, Ta-Jen, Lin, Han-Jun, Yu, Tien-Chun. A Comparison of Oxygen-vacancy Effect on Activity Behaviors of Carbon Dioxide and Steam Reforming of Methane over Supported Nickel Catalysts. Catalysis letters, vol.105, no.3, 239-247.

  67. Wang, Hong, Fang, Yuzhen, Liu, Yuan, Bai, Xue. Perovskite LaFeO3 supported bi-metal catalyst for syngas methanation. Journal of natural gas chemistry, vol.21, no.6, 745-752.

  68. Cui, Xin, Wu, Tong, Cao, Jing-Pei, Tang, Wen, Yang, Fei-Long, Zhu, Bai-An, Wang, Zheng. Mechanism for catalytic cracking of coal tar over fresh and reduced LaNi1-xFexO3 perovskite. Fuel, vol.288, 119683-.

  69. Watkins, M. B., Foster, A. S., Shluger, A. L.. Hydrogen Cycle on CeO2 (111) Surfaces: Density Functional Theory Calculations. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.111, no.42, 15337-15341.

  70. Chiba, Reiichi, Yoshimura, Fumikatsu, Sakurai, Yoji. An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid state ionics, vol.124, no.3, 281-288.

  71. Encyclopedia of Applied Electrochemistry Gores H. J. 1387 2014 10.1007/978-1-4419-6996-5_443 

  72. Takahashi, J., Toyoda, T., Ito, T., Takatsu, M.. Preparation of LaNiO3 powder from coprecipitated lanthanum-nickel oxalates. Journal of materials science, vol.25, no.3, 1557-1562.

  73. Kwon, Ohhun, Sengodan, Sivaprakash, Kim, Kyeounghak, Kim, Gihyeon, Jeong, Hu Young, Shin, Jeeyoung, Ju, Young-Wan, Han, Jeong Woo, Kim, Guntae. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nature communications, vol.8, 15967-.

  74. Lim, Hyun Suk, Kim, Gunjoo, Kim, Yikyeom, Lee, Minbeom, Kang, Dohyung, Lee, Hyunjoo, Lee, Jae W.. Ni-exsolved La1-xCaxNiO3 perovskites for improving CO2 methanation. Chemical engineering journal, vol.412, 127557-.

  75. Tejuca, L.G., Fierro, J.L.G.. XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide. Thermochimica acta, vol.147, no.2, 361-375.

  76. Lu, Jichang, Hao, Husheng, Zhang, Liming, Xu, Zhizhi, Zhong, Liping, Zhao, Yutong, He, Dedong, Liu, Jiangping, Chen, Dingkai, Pu, Hongping, He, Sufang, Luo, Yongming. The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH). Applied catalysis. B, Environmental, vol.237, 185-197.

  77. He, Dedong, Zhao, Yutong, Yang, Shuang, Mei, Yi, Yu, Jie, Liu, Jiangping, Chen, Dingkai, He, Sufang, Luo, Yongming. Enhancement of catalytic performance and resistance to carbonaceous deposit of lanthanum (La) doped HZSM-5 catalysts for decomposition of methyl mercaptan. Chemical engineering journal, vol.336, 579-586.

  78. Podkolzin, S. G., Stangland, E. E., Jones, M. E., Peringer, E., Lercher, J. A.. Methyl Chloride Production from Methane over Lanthanum-Based Catalysts. Journal of the American Chemical Society, vol.129, no.9, 2569-2576.

  79. Huygh, Stijn, Bogaerts, Annemie, Neyts, Erik C.. How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001). The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.120, no.38, 21659-21669.

  80. Chen, Hui-Lung, Chen, Hsin-Tsung, Ho, Jia-Jen. Density Functional Studies of the Adsorption and Dissociation of CO2 Molecule on Fe(111) Surface. Langmuir : the ACS journal of surfaces and colloids, vol.26, no.2, 775-781.

  81. Lim, Hyun Suk, Lee, Minbeom, Kim, Yikyeom, Kang, Dohyung, Lee, Jae W.. Low-temperature CO2 hydrogenation to CO on Ni-incorporated LaCoO3 perovskite catalysts. International journal of hydrogen energy, vol.46, no.29, 15497-15506.

  82. Azzouz, A., Nistor, D., Miron, D., Ursu, A.V., Sajin, T., Monette, F., Niquette, P., Hausler, R.. Assessment of acid–base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochimica acta, vol.449, no.1, 27-34.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로