$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Detecting and Analyzing Politically-Themed Stocks Using Text Mining Techniques and Transfer Entropy—Focus on the Republic of Korea’s Case 원문보기

Entropy, v.23 no.6, 2021년, pp.734 -   

Choi, Insu ,  Kim, Woo Chang

Abstract AI-Helper 아이콘AI-Helper

Politically-themed stocks mainly refer to stocks that benefit from the policies of politicians. This study gave the empirical analysis of the politically-themed stocks in the Republic of Korea and constructed politically-themed stock networks based on the Republic of Korea’s politically-themed...

Keyword

참고문헌 (63)

  1. 1. Herron M.C. Lavin J. Cram D. Silver J. Measurement of Political Effects in the United States Economy: A Study of the 1992 Presidential Election Econ. Polit. 1999 11 51 81 10.1111/1468-0343.00053 

  2. 2. Knight B. Are Policy Platforms Capitalized into Equity Prices? Evidence from the Bush/Gore 2000 Presidential Election J. Public Econ. 2006 90 751 773 10.1016/j.jpubeco.2005.06.003 

  3. 3. Levy T. Yagil J. The 2012 US Presidential Election Polls and Stock Returns J. Bus. Econ. Res. 2015 5 66 74 10.5296/ber.v5i2.8005 

  4. 4. Gobran P. Bacon F. Presidential Elections and Industry Stock Returns: A Test of Market Efficiency Int. J. Bus. Behav. Sci. 2017 29 21 31 

  5. 5. Wagner A.F. Zeckhauser R.J. Ziegler A. Company Stock Price Reactions to the 2016 Election Shock: Trump, Taxes, and Trade J. Financ. Econ. 2018 130 428 451 10.1016/j.jfineco.2018.06.013 

  6. 6. Financial Services Commission Results of Countermeasure against Politically-Themed Stocks of 19th Presidential Election Press Release in the Republic of Korea Seoul, Korea 2017 

  7. 7. Financial Supervisory Service Survey on Unfair Trade in Politically-Themeds of the 19th Presidential Election Press Release in the Republic of Korea Seoul, Korea 2017 

  8. 8. Nam G. Politically-Themed Stocks: Characteristics and Investment Risks KCMI Issue Rep. 2017 4 1 13 

  9. 9. Kwak H.S. Yeo E.J. An Event Study on the Politically-Themed Stocks on the 19th Presidential Election in Korea Korean J. Financ. Manag. 2019 36 209 245 

  10. 10. Hughes H. Crony capitalism and the East Asian currency and financial ‘crises’ J. Public Policy Ideas 1999 15 3 9 

  11. 11. Kim B.K. Im H.B. ‘Crony Capitalism’ in South Korea, Thailand and Taiwan: Myth and Reality J. East Asian Stud. 2001 1 5 52 10.1017/S1598240800000230 

  12. 12. Kang D.C. Crony Capitalism: Corruption and Development in South Korea and the Philippines Cambridge University Press Cambridge, UK 2002 

  13. 13. Kang D.C. Transaction costs and crony capitalism in East Asia Comp. Political Stud. 2003 35 439 458 10.2307/4150189 

  14. 14. Brown S.J. Warner J.B. Using Daily Stock Returns: The Case of Event Studies J. Financ. Econ. 1985 14 3 31 10.1016/0304-405X(85)90042-X 

  15. 15. Armitage S. Event study methods and evidence on their performance J. Econ. Surv. 1995 9 25 52 10.1111/j.1467-6419.1995.tb00109.x 

  16. 16. Hochreiter S. Schmidhuber J. LSTM Can Solve Hard Long Time Lag Problems Adv. Neural. Inform. Process. Syst. 1997 473 479 

  17. 17. Schuster M. Paliwal K.K. Bidirectional Recurrent Neural Networks IEEE Trans. Signal Process. 1997 45 2673 2681 10.1109/78.650093 

  18. 18. Graves A. Schmidhuber J. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures Neural Netw. 2005 18 602 610 10.1016/j.neunet.2005.06.042 16112549 

  19. 19. Park S.M. Na C.W. Choi M.S. Lee D.H. On B.W. KNU Korean Sentiment Lexicon: Bi-LSTM-Based Method for Building a Korean Sentiment Lexicon J. Intell. Inf. Syst. 2018 24 219 240 

  20. 20. Song M. Park H. Shin K.S. Attention-Based Long Short-Term Memory Network Using Sentiment Lexicon Embedding for Aspect-Level Sentiment Analysis in Korean Inf. Process. Manag. 2019 56 637 653 10.1016/j.ipm.2018.12.005 

  21. 21. Granger C.W. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods Econom. J. Econ. Soc. 1969 37 424 438 10.2307/1912791 

  22. 22. Quigley L. Statistical Analysis of the Log Returns of Financial Assets Master’s thesis. Master’s Thesis University of Limerick Limerick, Ireland 2008 

  23. 23. Sheikh A.Z. Qiao H. Non-normality of Market Returns: A Framework for Asset Allocation Decision Making J. Alter. Investig. 2009 12 8 35 10.3905/JAI.2010.12.3.008 

  24. 24. Tsai C.S.-Y. The Real World Is Not Normal Morningstar Alternative Investments Observer Chicago, IL, USA 2011 

  25. 25. Schinckus C. Is Econophysics a New Discipline? The Neopositivist Argument Phys. A Stat. Mech. Appl. 2010 389 3814 3821 10.1016/j.physa.2010.05.016 

  26. 26. Jovanovic F. Schinckus C. The Emergence of Econophysics: A New Approach in Modern Financial Theory Hist. Polit. Econ. 2013 45 443 474 10.1215/00182702-2334758 

  27. 27. Schreiber T. Measuring Information Transfer Phys. Rev. Lett. 2000 85 461 10.1103/PhysRevLett.85.461 10991308 

  28. 28. Bossomaier T. Barnett L. Harré M. Lizier J.T. An Introduction to Transfer Entropy Springer Berlin/Heidelberg, Germany 2016 

  29. 29. Marschinski R. Kantz H. Analysing the Information Flow between Financial Time-series Eur. Phys. J. B 2002 30 275 281 10.1140/epjb/e2002-00379-2 

  30. 30. Kwon O. Yang J.S. Information Flow between Composite Stock Index and Individual Stocks Phys. A Stat. Mech. Appl. 2008 387 2851 2856 10.1016/j.physa.2008.01.007 

  31. 31. Dimpfl T. Peter F.J. Using Transfer Entropy to Measure Information Flows Between Financial Markets Stud. Nonlinear Dyn. Econom. 2013 17 85 102 10.1515/snde-2012-0044 

  32. 32. Sandoval L. Structure of a Global Network of Financial Companies Based on Transfer Entropy Entropy 2014 16 4443 4482 10.3390/e16084443 

  33. 33. Sensoy A. Sobaci C. Sensoy S. Alali F. Effective Transfer Entropy Approach to Information Flow between Exchange Rates and Stock Markets Chaos Solitons Fractals 2014 68 180 185 10.1016/j.chaos.2014.08.007 

  34. 34. Bekiros S. Nguyen D.K. Junior L.S. Uddin G.S. Information Diffusion, Cluster Formation and Entropy-Based Network Dynamics in Equity and Commodity Markets Eur. J. Oper. Res. 2017 256 945 961 10.1016/j.ejor.2016.06.052 

  35. 35. Lim K. Kim S. Kim S.Y. Information Transfer across Intra/Inter-Structure of CDS and Stock Markets Phys. A 2017 486 118 126 10.1016/j.physa.2017.05.084 

  36. 36. Jang S.M. Yi E. Kim W.C. Ahn K. Information Flow between Bitcoin and Other Investment Assets Entropy 2019 21 1116 10.3390/e21111116 

  37. 37. Yue P. Cai Q. Yan W. Zhou W.X. Information Flow Networks of Chinese Stock Market Sectors IEEE Access 2020 8 13066 13077 10.1109/ACCESS.2020.2966278 

  38. 38. Yue P. Fan Y. Batten J.A. Zhou W.X. Information Transfer between Stock Market Sectors: A Comparison between the USA and China Entropy 2020 22 194 10.3390/e22020194 33285969 

  39. 39. Doane D.P. Aesthetic Frequency Classifications Am. Stat. 1976 30 181 183 

  40. 40. Freedman D. Diaconis P. On the Histogram as a Density Estimator: L 2 Theory Z. Wahrscheinlichkeitstheor. Verw. Geb. 1981 57 453 476 10.1007/BF01025868 

  41. 41. Allen F. Babus A. Networks in Finance The Network Challenge: Strategy, Profit, and Risk in an Interlinked World 1st ed. Kleindorfer P.R. Wind Y. Gunther R.E. FT Press Upper Saddle River, NJ, USA 2009 367 

  42. 42. Beije P.R. Groenewegen J. A Network Analysis of Markets J. Econ. Issues 1992 26 87 114 10.1080/00213624.1992.11505263 

  43. 43. Namaki A. Shirazi A.H. Raei R. Jafari G.R. Network Analysis of a Financial Market Based on Genuine Correlation and Threshold Method Phys. A Stat. Mech. Appl. 2011 390 3835 3841 10.1016/j.physa.2011.06.033 

  44. 44. Huang W.Q. Zhuang X.T. Yao S. A Network Analysis of the Chinese Stock Market Phys. A Stat. Mech. Appl. 2009 388 2956 2964 10.1016/j.physa.2009.03.028 

  45. 45. Roy R.B. Sarkar U.K. Identifying Influential Stock Indices from Global Stock Markets: A Social Network Analysis Approach Procedia Comput. Sci. 2011 5 442 449 10.1016/j.procs.2011.07.057 

  46. 46. Liao H. Mariani M.S. Medo M. Zhang Y.C. Zhou M.Y. Ranking in Evolving Complex Networks Phys. Rep. 2017 689 1 54 10.1016/j.physrep.2017.05.001 

  47. 47. Page L. Brin S. Motwani R. Winograd T. The PageRank Citation Ranking: Bringing Order to the Web Stanford Infolab, Stanford University Stanford, CA, USA 1999 

  48. 48. Kuzuba T.U. Ömercikolu I. Saltolu B. Network Centrality Measures and Systemic Risk: An Application to the Turkish Financial Crisis Phys. A Stat. Mech. Appl. 2014 405 203 215 10.1016/j.physa.2014.03.006 

  49. 49. Yun T.S. Jeong D. Park S. “Too Central to Fail” Systemic Risk Measure Using PageRank Algorithm J. Econ. Behav. Organ. 2019 162 251 272 10.1016/j.jebo.2018.12.021 

  50. 50. Tu C. Cointegration-Based Financial Networks Study in Chinese Stock Market Phys. A Stat. Mech. Appl. 2014 402 245 254 10.1016/j.physa.2014.01.071 

  51. 51. Tang Y. Xiong J.J. Luo Y. Zhang Y.C. How Do the Global Stock Markets Influence One Another? Evidence from Finance Big Data and Granger Causality Directed Network Int. J. Electron. Commer. 2019 23 85 109 10.1080/10864415.2018.1512283 

  52. 52. Higham D.J. Google PageRank as Mean Playing Time for Pinball on the Reverse Web Appl. Math. Lett. 2005 18 1359 1362 10.1016/j.aml.2005.02.020 

  53. 53. Kingma D.P. Ba J. Adam: A Method for Stochastic Optimization arXiv 2014 1412.6980 

  54. 54. Nam G. Concerns over Political–Themed Stocks Ahead of Korea’s 21st General Election Cap. Mark. Focus 2020 2 1 5 

  55. 55. Kim W.C. Lee Y. Lee Y.H. Cost of Asset Allocation in Equity Market: How Much Do Investors Lose Due to Bad Asset Class Design? J. Portf. Manag. 2014 41 34 44 10.3905/jpm.2014.41.1.034 

  56. 56. Sharpe W.F. Mutual Fund Performance J. Bus. 1966 39 119 138 10.1086/294846 

  57. 57. Sharpe W.F. The Sharpe Ratio J. Portf. Manag. 1994 21 49 58 10.3905/jpm.1994.409501 

  58. 58. Goedhart M. Koller T. Wessels D. Valuation: Measuring and Managing the Value of Companies John Wiley & Sons Hoboken, NJ, USA 2015 

  59. 59. Iyengar G. Kang W. Inverse Conic Programming with Applications Oper. Res. Lett. 2005 33 319 330 10.1016/j.orl.2004.04.007 

  60. 60. Lizier J.T. Prokopenko M. Zomaya A.Y. Local Information Transfer as a Spatiotemporal Filter for Complex Systems Phys. Rev. E 2008 77 026110 10.1103/PhysRevE.77.026110 18352093 

  61. 61. Vaswani A. Shazeer N. Parmar N. Uszkoreit J. Jones L. Gomez A.N. Polosukhin I. Attention is all you need arXiv 2017 1706.03762 

  62. 62. Devlin J. Chang M.W. Lee K. Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding arXiv 2019 1810.04805 

  63. 63. Dashtipour K. Gogate M. Li J. Jiang F. Kong B. Hussain A. A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks Neurocomputing 2020 380 1 10 10.1016/j.neucom.2019.10.009 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로