$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Instant bridge visual inspection using an unmanned aerial vehicle by image capturing and geo-tagging system and deep convolutional neural network 원문보기

Structural health monitoring, v.20 no.4, 2021년, pp.1760 - 1777  

Saleem, Muhammad Rakeh (Department of Civil and Environmental Engineering, Chung-Ang University, Seoul, South Korea) ,  Park, Jong-Woong (Department of Civil and Environmental Engineering, Chung-Ang University, Seoul, South Korea) ,  Lee, Jin-Hwan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) ,  Jung, Hyung-Jo (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea) ,  Sarwar, Muhammad Zohaib (Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway)

Abstract AI-Helper 아이콘AI-Helper

The structural condition of bridges is generally assessed using manual visual inspection. However, this approach consumes labor, time, and capital, and produces subjective results. Therefore, industries today are using automated visual inspection approaches, which quantify and localize damages such...

참고문헌 (52)

  1. Dong Y, Song R, Liu H. Bridges structural health monitoring and deterioration detection synthesis of knowledge and technology. Alaska University Transportation Center, Alaska Department of Transportation and Public Facilities, Report, 2010, https://scholarworks.alaska.edu:443/handle/11122/7476 (accessed 13 December 2019). 

  2. Dorafshan, Sattar, Maguire, Marc. Bridge inspection: human performance, unmanned aerial systems and automation. Journal of civil structural health monitoring, vol.8, no.3, 443-476.

  3. 10.1177/1475921719882330. 

  4. Kim, Hyunjun, Ahn, Eunjong, Shin, Myoungsu, Sim, Sung-Han. Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning. Structural health monitoring, vol.18, no.3, 725-738.

  5. Ali, Rahmat, Cha, Young-Jin. Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Construction & building materials, vol.226, 376-387.

  6. Kim, In-Ho, Jeon, Haemin, Baek, Seung-Chan, Hong, Won-Hwa, Jung, Hyung-Jo. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle. Sensors, vol.18, no.6, 1881-.

  7. Prasanna, Prateek, Dana, Kristin J., Gucunski, Nenad, Basily, Basily B., La, Hung M., Lim, Ronny Salim, Parvardeh, Hooman. Automated Crack Detection on Concrete Bridges. IEEE transactions on automation science and engineering, vol.13, no.2, 591-599.

  8. Ortiz, Alberto, Bonnin-Pascual, Francisco, Garcia-Fidalgo, Emilio, Company-Corcoles, Joan P.. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application. Sensors, vol.16, no.12, 2118-.

  9. Zhu, Z., German, S., Brilakis, I.. Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Automation in construction, vol.20, no.7, 874-883.

  10. Proceedings of the 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM’15) Kim J-W 11 

  11. Catbas, F. Necati, Brown, David L., Aktan, A. Emin. Parameter Estimation for Multiple-Input Multiple-Output Modal Analysis of Large Structures. Journal of engineering mechanics, vol.130, no.8, 921-930.

  12. Sanchez-Cuevas, Pedro J., Ramon-Soria, Pablo, Arrue, Begoña, Ollero, Anibal, Heredia, Guillermo. Robotic System for Inspection by Contact of Bridge Beams Using UAVs. Sensors, vol.19, no.2, 305-.

  13. 28th International Symposium on Automation and Robotics in Construction (ISARC) Lee BJ 1426 

  14. Lim, Ronny Salim, Hung Manh La, Weihua Sheng. A Robotic Crack Inspection and Mapping System for Bridge Deck Maintenance. IEEE transactions on automation science and engineering, vol.11, no.2, 367-378.

  15. Li, Bing, Ushiroda, Kenshin, Yang, Liang, Song, Qiang, Xiao, Jizhong. Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM. International journal of intelligent robotics and applications, vol.1, no.3, 255-270.

  16. 10.1177/1475921718757405. 

  17. Huang, Jie‐zhong, Li, Dong‐sheng, Li, Hong‐nan, Song, Gang‐bing, Liang, Yabin. Damage identification of a large cable‐stayed bridge with novel cointegrated Kalman filter method under changing environments. Structural control and health monitoring, vol.25, no.5, e2152-.

  18. 10.1177/1475921719883202. 

  19. 11th International Workshop on Structural Health Monitoring Davoudi R 

  20. 10.3389/fbuil.2018.00031. 

  21. 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML) Lee K-B 

  22. 10th International Micro Air Vehicle Conference (IMAV) Parlange R 

  23. Shihavuddin, ASM, Chen, Xiao, Fedorov, Vladimir, Nymark Christensen, Anders, Andre Brogaard Riis, Nicolai, Branner, Kim, Bjorholm Dahl, Anders, Reinhold Paulsen, Rasmus. Wind Turbine Surface Damage Detection by Deep Learning Aided Drone Inspection Analysis. Energies, vol.12, no.4, 676-.

  24. Spencer Jr., Billie F., Hoskere, Vedhus, Narazaki, Yasutaka. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering : (beijing, china), vol.5, no.2, 199-222.

  25. Kang, Dongho, Cha, Young‐Jin. Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic Beacon System with Geo‐Tagging. Computer-aided civil and infrastructure engineering, vol.33, no.10, 885-902.

  26. Jang, Keunyoung, Kim, Namgyu, An, Yun-Kyu. Deep learning-based autonomous concrete crack evaluation through hybrid image scanning. Structural health monitoring, vol.18, no.5, 1722-1737.

  27. Akbar, Muhammad Ali, Qidwai, Uvais, Jahanshahi, Mohammad R.. An evaluation of image‐based structural health monitoring using integrated unmanned aerial vehicle platform. Structural control and health monitoring, vol.26, no.1, e2276-.

  28. 10.1177/1475921719898862. 

  29. Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring Song S 

  30. Brooks C, Richard JD, David MB, et al. Evaluating the use of unmanned aerial vehicles for transportation purposes, https://trid.trb.org/view/1352503 (2015, accessed 2 March 2020). 

  31. La, Hung M., Lim, Ronny Salim, Basily, Basily B., Gucunski, Nenad, Jingang Yi, Maher, Ali, Romero, Francisco A., Parvardeh, Hooman. Mechatronic Systems Design for an Autonomous Robotic System for High-Efficiency Bridge Deck Inspection and Evaluation. IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, vol.18, no.6, 1655-1664.

  32. Gibb, Spencer, La, Hung Manh, Le, Tuan, Nguyen, Luan, Schmid, Ryan, Pham, Huy. Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection. Journal of field robotics, vol.35, no.6, 988-1004.

  33. Firoozi Yeganeh, Sayna, Golroo, Amir, Jahanshahi, Mohammad R.. Automated Rutting Measurement Using an Inexpensive RGB-D Sensor Fusion Approach. Journal of transportation engineering. Part b, Pavements, vol.145, no.1, 04018061-.

  34. 10.1111/mice.12519. 

  35. 10.1155/2016/8121678 

  36. La HM. Automated robotic monitoring and inspection of steel structures and bridges. arXiv:1705.04888, http://arxiv.org/abs/1705.04888 (2017, accessed 2 March 2020). 

  37. Moussa, A., El-Sheimy, N.. A FAST APPROACH FOR STITCHING OF AERIAL IMAGES. The International archives of the photogrammetry, remote sensing and spatial information sciences, vol.41, no.b3, 769-774.

  38. Liu, Q., Liu, W., Zou, L., Wang, J., Liu, Y.. A NEW APPROACH TO FAST MOSAIC UAV IMAGES. The International archives of the photogrammetry, remote sensing and spatial information sciences, vol.38, no.1, 271-276.

  39. Bosch Sensortec. Intelligent 9-axis absolute orientation sensor. Reutlingen: Bosch Sensortec, p. 106, 2016. 

  40. Ren, Shaoqing, He, Kaiming, Girshick, Ross, Sun, Jian. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE transactions on pattern analysis and machine intelligence, vol.39, no.6, 1137-1149.

  41. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Redmon J 779 

  42. 10.1007/978-3-319-46448-0_2 Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. arXiv:1512.02325, 2016, https://arxiv.org/abs/1512.02325 

  43. He K, Gkioxari G, Dollár P, et al. Mask R-CNN. arXiv:1703.06870, http://arxiv.org/abs/1703.06870 (2018, accessed 8 December 2019). 

  44. Dorafshan, Sattar, Thomas, Robert J., Maguire, Marc. SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data in brief, vol.21, 1664-1668.

  45. Anantha Natarajan S. ImageScraper: a simple image scraper to download all images from a given url, https://pypi.org/project/ImageScraper/ 

  46. Shi, Yong, Cui, Limeng, Qi, Zhiquan, Meng, Fan, Chen, Zhensong. Automatic Road Crack Detection Using Random Structured Forests. IEEE transactions on intelligent transportation systems : a publication of the IEEE Intelligent Transportation Systems Council, vol.17, no.12, 3434-3445.

  47. VGG image annotator, http://www.robots.ox.ac.uk/∼vgg/software/via/via_demo.html (accessed 15 December 2019). 

  48. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. arXiv:1512.03385, http://arxiv.org/abs/1512.03385 (2015, accessed 9 December 2019). 

  49. Kim, Byunghyun, Cho, Soojin. Image‐based concrete crack assessment using mask and region‐based convolutional neural network. Structural control and health monitoring, vol.26, no.8, e2381-.

  50. Bouguet J-Y. Camera calibration toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed 8 December 2019). 

  51. Zhang, Z.. A flexible new technique for camera calibration. IEEE transactions on pattern analysis and machine intelligence, vol.22, no.11, 1330-1334.

  52. 2019 IEEE Aerospace Conference Vanegas F 1 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로