최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of nanomedicine, v.16, 2021년, pp.4277 - 4288
Zarghami Dehaghani, Maryam (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University , Nanjing , 210037 , People’s Republic of China) , Yousefi, Farrokh (Department of Physics, University of Zanjan , Zanjan , 45195-313 , Iran) , Bagheri, Babak (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 305-701 , Republic of Korea) , Seidi, Farzad (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University , Nanjing , 210037 , People’s Republic of China) , Hamed Mashhadzadeh, Amin (Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran , Tehran , Ir) , Rabiee, Navid , Zarrintaj, Payam , Mostafavi, Ebrahim , Saeb, Mohammad Reza , Kim, Yeu-Chun
IntroductionAntimicrobial peptides are potential therapeutics as anti-bacteria, anti-viruses, anti-fungi, or anticancers. However, they suffer from a short half-life and drug resistance which limit their long-term clinical usage.MethodsHerein, we captured the encapsulation of antimicrobial peptide H...
1. Bodanszky M . Peptide Chemistry . Berlin, Germany : Springer-Verlag ; 1993 .
2. Mondal S , Das S , Nandi AK . A review on recent advances in polymer and peptide hydrogels . Soft Matter . 2020 ; 16 : 1404 – 1454 . 31984400
3. Powers J-PS , Hancock RE . The relationship between peptide structure and antibacterial activity . Peptides . 2003 ; 24 ( 11 ): 1681 – 1691 . doi: 10.1016/j.peptides.2003.08.023 15019199
4. Tamerler C , Sarikaya M . Genetically designed peptide-based molecular materials . Acs Nano . 2009 ; 3 ( 7 ): 1606 – 1615 . doi: 10.1021/nn900720g 21452861
5. Knorr R , Trzeciak A , Bannwarth W , Gillessen D . New coupling reagents in peptide chemistry . Tetrahedron Lett . 1989 ; 30 ( 15 ): 1927 – 1930 . doi: 10.1016/S0040-4039(00)99616-3
6. Kuzmicheva G , Belyavskaya V . Peptide phage display in biotechnology and biomedicine . Biochem (Mosc) Suppl Ser B Biomed Chem . 2017 ; 11 ( 1 ): 1 – 15 . doi: 10.1134/S1990750817010061
7. De La Rica R , Matsui H . Applications of peptide and protein-based materials in bionanotechnology . Chem Soc Rev . 2010 ; 39 ( 9 ): 3499 – 3509 . doi: 10.1039/b917574c 20596584
9. Fosgerau K , Hoffmann T . Peptide therapeutics: current status and future directions . Drug Discov Today . 2015 ; 20 ( 1 ): 122 – 128 . doi: 10.1016/j.drudis.2014.10.003 25450771
10. Honigberg MC , Chang L-S , McGuire DK , Plutzky J , Aroda VR , Vaduganathan M . Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: a review . JAMA Cardiol . 2020 ; 5 ( 10 ): 1182 – 1190 . doi: 10.1001/jamacardio.2020.1966 32584928
11. Shahidi F , Zhong Y . Bioactive peptides . J AOAC Int . 2008 ; 91 ( 4 ): 914 – 931 . doi: 10.1093/jaoac/91.4.914 18727554
12. Daliri EB-M , Oh DH , Lee BH . Bioactive peptides . Foods . 2017 ; 6 ( 5 ): 32 . doi: 10.3390/foods6050032
13. Wang P , Cui Q , Zhang Y , et al. A review of pedal peptide/orcokinin-type neuropeptides . Curr Protein Pept Sci . 2021 ; 22 ( 1 ): 41 – 49 . doi: 10.2174/1389203721666201109112758 33167831
14. Liu W-P , Chen Y-H , Ming X , Kong Y . Design and synthesis of a novel cationic peptide with potent and broad-spectrum antimicrobial activity . Biomed Res Int . 2015 ; 2015 : 578764 . doi: 10.1155/2015/578764 26688811
15. Yeaman MR , Yount NY . Mechanisms of antimicrobial peptide action and resistance . Pharmacol Rev . 2003 ; 55 ( 1 ): 27 – 55 . doi: 10.1124/pr.55.1.2 12615953
16. Mukhopadhyay S , Prasad AB , Mehta CH , Nayak UY . Antimicrobial peptide polymers: no escape to ESKAPE pathogens—a review . World J Microbiol Biotechnol . 2020 ; 36 ( 9 ): 1 – 14 . doi: 10.1007/s11274-020-02907-1
17. Hitchner MA , Santiago-Ortiz LE , Necelis MR , et al. Activity and characterization of a pH-sensitive antimicrobial peptide . Biochim Biophys Acta . 2019 ; 1861 ( 10 ): 182984 . doi: 10.1016/j.bbamem.2019.05.006
18. Jenssen H , Hamill P , Hancock RE . Peptide antimicrobial agents . Clin Microbiol Rev . 2006 ; 19 ( 3 ): 491 – 511 . doi: 10.1128/CMR.00056-05 16847082
19. Gough M , Hancock R , Kelly NM . Antiendotoxin activity of cationic peptide antimicrobial agents . Infect Immun . 1996 ; 64 ( 12 ): 4922 – 4927 . doi: 10.1128/IAI.64.12.4922-4927.1996 8945527
20. Lei J , Sun L , Huang S , et al. The antimicrobial peptides and their potential clinical applications . Am J Transl Res . 2019 ; 11 ( 7 ): 3919 . 31396309
21. Moravej H , Moravej Z , Yazdanparast M , et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria . Microb Drug Resist . 2018 ; 24 ( 6 ): 747 – 767 . doi: 10.1089/mdr.2017.0392 29957118
22. Pardridge WM . Recent developments in peptide drug delivery to the brain . Pharmacol Toxicol . 1992 ; 71 ( 1 ): 3 – 10 . doi: 10.1111/j.1600-0773.1992.tb00512.x 1523192
23. Pizzolato-Cezar LR , Okuda-Shinagawa NM , Machini MT . Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance . Front Microbiol . 2019 ; 10 : 1703 . doi: 10.3389/fmicb.2019.01703 31447797
24. Subbalakshmi C , Bikshapathy E , Sitaram N , Nagaraj R . Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin . Biochem Biophys Res Commun . 2000 ; 274 ( 3 ): 714 – 716 . doi: 10.1006/bbrc.2000.3214 10924341
25. Band VI , Weiss DS . Mechanisms of antimicrobial peptide resistance in gram-negative bacteria . Antibiotics . 2015 ; 4 ( 1 ): 18 – 41 . doi: 10.3390/antibiotics4010018 25927010
26. Smith AW . Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev . 2005 ; 57 ( 10 ): 1539 – 1550 . doi: 10.1016/j.addr.2005.04.007 15950314
27. Zarrintaj P , Ramsey JD , Samadi A , et al. Poloxamer: a versatile tri-block copolymer for biomedical applications . Acta Biomater . 2020 .
28. Yoosefian M , Etminan N . Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube . Physica E Low Dimens Syst Nanostruct . 2016 ; 81 : 116 – 121 . doi: 10.1016/j.physe.2016.03.009
29. Skandani AA , Al-Haik M . Reciprocal effects of the chirality and the surface functionalization on the drug delivery permissibility of carbon nanotubes . Soft Matter . 2013 ; 9 ( 48 ): 11645 – 11649 . doi: 10.1039/C3SM52126E 25535628
30. Ramos MADS , Da Silva PB , Spósito L , et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review . Int J Nanomedicine . 2018 ; 13 : 1179 . doi: 10.2147/IJN.S146195 29520143
31. Bernkop-Schnürch A , Bratengeyer I , Valenta C . Development and in vitro evaluation of a drug delivery system protecting from trypsinic degradation . Int J Pharm . 1997 ; 157 ( 1 ): 17 – 25 . doi: 10.1016/S0378-5173(97)00198-1
32. Arsawang U , Saengsawang O , Rungrotmongkol T , et al. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model . 2011 ; 29 ( 5 ): 591 – 596 . doi: 10.1016/j.jmgm.2010.11.002 21167762
33. Zarghami MD , Bagheri B , Nasiriasayesh A , et al. Insight into the self-insertion of a protein inside the boron nitride nanotube . ACS Omega . 2020 ; 5 ( 49 ): 32051 . doi: 10.1021/acsomega.0c05080 33344859
34. Chen X , Wu P , Rousseas M , et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells . J Am Chem Soc . 2009 ; 131 ( 3 ): 890 – 891 . doi: 10.1021/ja807334b 19119844
35. Cohen ML , Zettl A . The physics of boron nitride nanotubes . Phys Today . 2010 ; 63 ( 11 ): 34 – 38 . doi: 10.1063/1.3518210
36. Mirhaji E , Afshar M , Rezvani S , Yoosefian M . Boron nitride nanotubes as a nanotransporter for anticancer docetaxel drug in water/ethanol solution . J Mol Liq . 2018 ; 271 : 151 – 156 . doi: 10.1016/j.molliq.2018.08.142
37. Khatti Z , Hashemianzadeh SM . Boron nitride nanotube as a delivery system for platinum drugs: drug encapsulation and diffusion coefficient prediction . Eur J Pharm Sci . 2016 ; 88 : 291 – 297 . doi: 10.1016/j.ejps.2016.04.011 27084121
38. Roosta S , Nikkhah SJ , Sabzali M , Hashemianzadeh SM . Molecular dynamics simulation study of boron-nitride nanotubes as a drug carrier: from encapsulation to releasing . RSC Adv . 2016 ; 6 ( 11 ): 9344 – 9351 . doi: 10.1039/C5RA22945F
39. Mortazavifar A , Raissi H , Shahabi M . Comparative prediction of binding affinity of hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles . J Biomol Struct Dyn . 2019 ; 37 ( 18 ): 4852 – 4862 . doi: 10.1080/07391102.2019.1567385 30721644
40. Roosta S , Hashemianzadeh SM , Ketabi S . Encapsulation of cisplatin as an anticancer drug into boron-nitride and carbon nanotubes: molecular simulation and free energy calculation . Mater Sci Eng C . 2016 ; 67 : 98 – 103 . doi: 10.1016/j.msec.2016.04.100
41. Hasanzade Z , Raissi H . Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach . J Biomol Struct Dyn . 2020 ; 38 ( 3 ): 697 – 707 . doi: 10.1080/07391102.2019.1585951 30900530
42. Zarghami MD , Bagheri B , Yousefi F , et al. Boron nitride nanotube as an antimicrobial peptide carrier: a theoretical insight . Int J Nanomedicine . 2021 ; 16 : 1837 . doi: 10.2147/IJN.S298699 33692624
43. Iranmanesh‐Zarandy Z , Dehestani M . Molecular dynamics simulation of paracetamol drug adsorption on boron nitride nanotube: effects of temperature, nanotube length, diameter, and chirality . ChemistrySelect . 2019 ; 4 ( 27 ): 7866 – 7873 . doi: 10.1002/slct.201900644
44. Sedghamiz E , Jamalizadeh E , Hosseini SMA , Sedghamiz T , Zahedi E . Molecular dynamics simulation of boron nitride nanotube as a drug carrier . Arab J Sci Eng . 2014 ; 39 ( 9 ): 6737 – 6742 . doi: 10.1007/s13369-014-1228-y
45. El Khalifi M , Bentin J , Duverger E , Gharbi T , Boulahdour H , Picaud F . Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube . Phys Chem Chem Phys . 2016 ; 18 ( 36 ): 24994 – 25001 . doi: 10.1039/C6CP01387B 27711377
46. Mehrjouei E , Akbarzadeh H , Shamkhali AN , Abbaspour M , Salemi S , Abdi P . Delivery of cisplatin anticancer drug from carbon, boron nitride, and silicon carbide nanotubes forced by Ag-nanowire: a comprehensive molecular dynamics study . Mol Pharm . 2017 ; 14 ( 7 ): 2273 – 2284 . doi: 10.1021/acs.molpharmaceut.7b00106 28595387
47. Saikia N , Jha AN , Deka RC . Interaction of pyrazinamide drug functionalized carbon and boron nitride nanotubes with pncA protein: a molecular dynamics and density functional approach . RSC Adv . 2013 ; 3 ( 35 ): 15102 – 15107 . doi: 10.1039/c3ra42534g
48. Katiyar RS , Jha PK . Molecular simulations in drug delivery: opportunities and challenges . Wiley Interdiscip Rev Comput Mol Sci . 2018 ; 8 : e1358 .
49. Singh A , Vanga SK , Orsat V , Raghavan V . Application of molecular dynamic simulation to study food proteins: a review . Crit Rev Food Sci Nutr . 2018 ; 58 ( 16 ): 2779 – 2789 . doi: 10.1080/10408398.2017.1341864 28723250
50. Bagheri B , Dehaghani MZ , Karami Z , et al. Correlation between surface topological defects and fracture mechanism of γ-graphyne-like boron nitride nanosheets . Comput Mater Sci . 2020 ; 110152 .
51. Dehaghani MZ , Mashhadzadeh AH , Salmankhani A , et al. Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis . Eng Fract Mech . 2020 ; 235 : 107194 . doi: 10.1016/j.engfracmech.2020.107194
52. Zarghami dehaghani M , Salmankhani A , Hamed mashhadzadeh A , Habibzadeh S , Abida O , Reza Saeb M . Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis . Eng Fract Mech . 2021 ; 244 : 107552 . doi: 10.1016/j.engfracmech.2021.107552
53. Bagheri B , Dehaghani MZ , Safa ME , et al. Fracture fingerprint of polycrystalline C3N nanosheets: theoretical basis . J Mol Graph Model . 2021 ; 106 : 107899 . doi: 10.1016/j.jmgm.2021.107899 33857891
54. Salmankhani A , Karami Z , Mashhadzadeh AH , et al. A theoretical scenario for the mechanical failure of boron carbide nanotubes . Comput Mater Sci . 2021 ; 186 : 110022 . doi: 10.1016/j.commatsci.2020.110022
55. Albooyeh A , Dadrasi A , Mashhadzadeh AH . Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: a molecular dynamics study . Mater Chem Phys . 2020 ; 239 : 122107 . doi: 10.1016/j.matchemphys.2019.122107
56. Zhu S , Aumelas A , Gao B . Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin . J Med Chem . 2011 ; 54 ( 4 ): 1091 – 1095 . doi: 10.1021/jm1010463 21222457
57. Plimpton S . Fast parallel algorithms for short-range molecular dynamics . J Comput Phys . 1995 ; 117 ( 1 ): 1 – 19 . doi: 10.1006/jcph.1995.1039
58. Park S , Schulten K . Calculating potentials of mean force from steered molecular dynamics simulations . J Chem Phys . 2004 ; 120 ( 13 ): 5946 – 5961 . doi: 10.1063/1.1651473 15267476
59. Los J , Kroes J , Albe K , Gordillo R , Katsnelson M , Fasolino A . Extended tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN . Phys Rev B . 2017 ; 96 ( 18 ): 184108 . doi: 10.1103/PhysRevB.96.184108
60. Hirschfelder JO , Curtiss CF , Bird RB , Mayer MG . Molecular Theory of Gases and Liquids . New York : Wiley ; 1964 .
61. Humphrey W , Dalke A , Schulten K . VMD: visual molecular dynamics . J Mol Graph . 1996 ; 14 ( 1 ): 33 – 38 . doi: 10.1016/0263-7855(96)00018-5 8744570
62. Sargsyan K , Grauffel C , Lim C . How molecular size impacts RMSD applications in molecular dynamics simulations . J Chem Theory Comput . 2017 ; 13 : 1518 – 1524 . 28267328
63. Kang Y , Liu Y-C , Wang Q , Shen J-W , Wu T , Guan W-J . On the spontaneous encapsulation of proteins in carbon nanotubes . Biomaterials . 2009 ; 30 ( 14 ): 2807 – 2815 . doi: 10.1016/j.biomaterials.2009.01.024 19200595
64. Veclani D , Melchior A . Adsorption of ciprofloxacin on carbon nanotubes: insights from molecular dynamics simulations . J Mol Liq . 2020 ; 298 : 111977 . doi: 10.1016/j.molliq.2019.111977
65. Zhang D , Gullingsrud J , McCammon JA . Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain . J Am Chem Soc . 2006 ; 128 ( 9 ): 3019 – 3026 . doi: 10.1021/ja057292u 16506783
66. Zhang L , Peng G , Li J , et al. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes . J Mol Liq . 2018 ; 262 : 295 – 301 . doi: 10.1016/j.molliq.2018.04.097
67. Shen J-W , Tang T , Wei X-H , et al. On the loading mechanism of ssDNA into carbon nanotubes . RSC Adv . 2015 ; 5 ( 70 ): 56896 – 56903 . doi: 10.1039/C5RA01941A
68. Shen J-W , Wu T , Wang Q , Kang Y . Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces . Biomaterials . 2008 ; 29 ( 28 ): 3847 – 3855 . doi: 10.1016/j.biomaterials.2008.06.013 18617259
69. Raffaini G , Ganazzoli F . Surface topography effects in protein adsorption on nanostructured carbon allotropes . Langmuir . 2013 ; 29 ( 15 ): 4883 – 4893 . doi: 10.1021/la3050779 23517008
70. Raffaini G , Ganazzoli F . Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: a molecular dynamics study . J Chromatogr A . 2015 ; 1425 : 221 – 230 . doi: 10.1016/j.chroma.2015.11.045 26627588
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.