$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study 원문보기

International journal of nanomedicine, v.16, 2021년, pp.4277 - 4288  

Zarghami Dehaghani, Maryam (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University , Nanjing , 210037 , People’s Republic of China) ,  Yousefi, Farrokh (Department of Physics, University of Zanjan , Zanjan , 45195-313 , Iran) ,  Bagheri, Babak (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon , 305-701 , Republic of Korea) ,  Seidi, Farzad (Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University , Nanjing , 210037 , People’s Republic of China) ,  Hamed Mashhadzadeh, Amin (Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran , Tehran , Ir) ,  Rabiee, Navid ,  Zarrintaj, Payam ,  Mostafavi, Ebrahim ,  Saeb, Mohammad Reza ,  Kim, Yeu-Chun

Abstract AI-Helper 아이콘AI-Helper

IntroductionAntimicrobial peptides are potential therapeutics as anti-bacteria, anti-viruses, anti-fungi, or anticancers. However, they suffer from a short half-life and drug resistance which limit their long-term clinical usage.MethodsHerein, we captured the encapsulation of antimicrobial peptide H...

Keyword

참고문헌 (70)

  1. 1. Bodanszky M . Peptide Chemistry . Berlin, Germany : Springer-Verlag ; 1993 . 

  2. 2. Mondal S , Das S , Nandi AK . A review on recent advances in polymer and peptide hydrogels . Soft Matter . 2020 ; 16 : 1404 – 1454 . 31984400 

  3. 3. Powers J-PS , Hancock RE . The relationship between peptide structure and antibacterial activity . Peptides . 2003 ; 24 ( 11 ): 1681 – 1691 . doi: 10.1016/j.peptides.2003.08.023 15019199 

  4. 4. Tamerler C , Sarikaya M . Genetically designed peptide-based molecular materials . Acs Nano . 2009 ; 3 ( 7 ): 1606 – 1615 . doi: 10.1021/nn900720g 21452861 

  5. 5. Knorr R , Trzeciak A , Bannwarth W , Gillessen D . New coupling reagents in peptide chemistry . Tetrahedron Lett . 1989 ; 30 ( 15 ): 1927 – 1930 . doi: 10.1016/S0040-4039(00)99616-3 

  6. 6. Kuzmicheva G , Belyavskaya V . Peptide phage display in biotechnology and biomedicine . Biochem (Mosc) Suppl Ser B Biomed Chem . 2017 ; 11 ( 1 ): 1 – 15 . doi: 10.1134/S1990750817010061 

  7. 7. De La Rica R , Matsui H . Applications of peptide and protein-based materials in bionanotechnology . Chem Soc Rev . 2010 ; 39 ( 9 ): 3499 – 3509 . doi: 10.1039/b917574c 20596584 

  8. 8. Kuzmicheva G , Belyavskaya V . Peptide phage display in biotechnology and biomedicine . Biomed Khim . 2016 ; 62 ( 5 ): 481 – 495 . doi: 10.18097/PBMC20166205481 27797323 

  9. 9. Fosgerau K , Hoffmann T . Peptide therapeutics: current status and future directions . Drug Discov Today . 2015 ; 20 ( 1 ): 122 – 128 . doi: 10.1016/j.drudis.2014.10.003 25450771 

  10. 10. Honigberg MC , Chang L-S , McGuire DK , Plutzky J , Aroda VR , Vaduganathan M . Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: a review . JAMA Cardiol . 2020 ; 5 ( 10 ): 1182 – 1190 . doi: 10.1001/jamacardio.2020.1966 32584928 

  11. 11. Shahidi F , Zhong Y . Bioactive peptides . J AOAC Int . 2008 ; 91 ( 4 ): 914 – 931 . doi: 10.1093/jaoac/91.4.914 18727554 

  12. 12. Daliri EB-M , Oh DH , Lee BH . Bioactive peptides . Foods . 2017 ; 6 ( 5 ): 32 . doi: 10.3390/foods6050032 

  13. 13. Wang P , Cui Q , Zhang Y , et al. A review of pedal peptide/orcokinin-type neuropeptides . Curr Protein Pept Sci . 2021 ; 22 ( 1 ): 41 – 49 . doi: 10.2174/1389203721666201109112758 33167831 

  14. 14. Liu W-P , Chen Y-H , Ming X , Kong Y . Design and synthesis of a novel cationic peptide with potent and broad-spectrum antimicrobial activity . Biomed Res Int . 2015 ; 2015 : 578764 . doi: 10.1155/2015/578764 26688811 

  15. 15. Yeaman MR , Yount NY . Mechanisms of antimicrobial peptide action and resistance . Pharmacol Rev . 2003 ; 55 ( 1 ): 27 – 55 . doi: 10.1124/pr.55.1.2 12615953 

  16. 16. Mukhopadhyay S , Prasad AB , Mehta CH , Nayak UY . Antimicrobial peptide polymers: no escape to ESKAPE pathogens—a review . World J Microbiol Biotechnol . 2020 ; 36 ( 9 ): 1 – 14 . doi: 10.1007/s11274-020-02907-1 

  17. 17. Hitchner MA , Santiago-Ortiz LE , Necelis MR , et al. Activity and characterization of a pH-sensitive antimicrobial peptide . Biochim Biophys Acta . 2019 ; 1861 ( 10 ): 182984 . doi: 10.1016/j.bbamem.2019.05.006 

  18. 18. Jenssen H , Hamill P , Hancock RE . Peptide antimicrobial agents . Clin Microbiol Rev . 2006 ; 19 ( 3 ): 491 – 511 . doi: 10.1128/CMR.00056-05 16847082 

  19. 19. Gough M , Hancock R , Kelly NM . Antiendotoxin activity of cationic peptide antimicrobial agents . Infect Immun . 1996 ; 64 ( 12 ): 4922 – 4927 . doi: 10.1128/IAI.64.12.4922-4927.1996 8945527 

  20. 20. Lei J , Sun L , Huang S , et al. The antimicrobial peptides and their potential clinical applications . Am J Transl Res . 2019 ; 11 ( 7 ): 3919 . 31396309 

  21. 21. Moravej H , Moravej Z , Yazdanparast M , et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria . Microb Drug Resist . 2018 ; 24 ( 6 ): 747 – 767 . doi: 10.1089/mdr.2017.0392 29957118 

  22. 22. Pardridge WM . Recent developments in peptide drug delivery to the brain . Pharmacol Toxicol . 1992 ; 71 ( 1 ): 3 – 10 . doi: 10.1111/j.1600-0773.1992.tb00512.x 1523192 

  23. 23. Pizzolato-Cezar LR , Okuda-Shinagawa NM , Machini MT . Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance . Front Microbiol . 2019 ; 10 : 1703 . doi: 10.3389/fmicb.2019.01703 31447797 

  24. 24. Subbalakshmi C , Bikshapathy E , Sitaram N , Nagaraj R . Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin . Biochem Biophys Res Commun . 2000 ; 274 ( 3 ): 714 – 716 . doi: 10.1006/bbrc.2000.3214 10924341 

  25. 25. Band VI , Weiss DS . Mechanisms of antimicrobial peptide resistance in gram-negative bacteria . Antibiotics . 2015 ; 4 ( 1 ): 18 – 41 . doi: 10.3390/antibiotics4010018 25927010 

  26. 26. Smith AW . Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev . 2005 ; 57 ( 10 ): 1539 – 1550 . doi: 10.1016/j.addr.2005.04.007 15950314 

  27. 27. Zarrintaj P , Ramsey JD , Samadi A , et al. Poloxamer: a versatile tri-block copolymer for biomedical applications . Acta Biomater . 2020 . 

  28. 28. Yoosefian M , Etminan N . Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube . Physica E Low Dimens Syst Nanostruct . 2016 ; 81 : 116 – 121 . doi: 10.1016/j.physe.2016.03.009 

  29. 29. Skandani AA , Al-Haik M . Reciprocal effects of the chirality and the surface functionalization on the drug delivery permissibility of carbon nanotubes . Soft Matter . 2013 ; 9 ( 48 ): 11645 – 11649 . doi: 10.1039/C3SM52126E 25535628 

  30. 30. Ramos MADS , Da Silva PB , Spósito L , et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review . Int J Nanomedicine . 2018 ; 13 : 1179 . doi: 10.2147/IJN.S146195 29520143 

  31. 31. Bernkop-Schnürch A , Bratengeyer I , Valenta C . Development and in vitro evaluation of a drug delivery system protecting from trypsinic degradation . Int J Pharm . 1997 ; 157 ( 1 ): 17 – 25 . doi: 10.1016/S0378-5173(97)00198-1 

  32. 32. Arsawang U , Saengsawang O , Rungrotmongkol T , et al. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model . 2011 ; 29 ( 5 ): 591 – 596 . doi: 10.1016/j.jmgm.2010.11.002 21167762 

  33. 33. Zarghami MD , Bagheri B , Nasiriasayesh A , et al. Insight into the self-insertion of a protein inside the boron nitride nanotube . ACS Omega . 2020 ; 5 ( 49 ): 32051 . doi: 10.1021/acsomega.0c05080 33344859 

  34. 34. Chen X , Wu P , Rousseas M , et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells . J Am Chem Soc . 2009 ; 131 ( 3 ): 890 – 891 . doi: 10.1021/ja807334b 19119844 

  35. 35. Cohen ML , Zettl A . The physics of boron nitride nanotubes . Phys Today . 2010 ; 63 ( 11 ): 34 – 38 . doi: 10.1063/1.3518210 

  36. 36. Mirhaji E , Afshar M , Rezvani S , Yoosefian M . Boron nitride nanotubes as a nanotransporter for anticancer docetaxel drug in water/ethanol solution . J Mol Liq . 2018 ; 271 : 151 – 156 . doi: 10.1016/j.molliq.2018.08.142 

  37. 37. Khatti Z , Hashemianzadeh SM . Boron nitride nanotube as a delivery system for platinum drugs: drug encapsulation and diffusion coefficient prediction . Eur J Pharm Sci . 2016 ; 88 : 291 – 297 . doi: 10.1016/j.ejps.2016.04.011 27084121 

  38. 38. Roosta S , Nikkhah SJ , Sabzali M , Hashemianzadeh SM . Molecular dynamics simulation study of boron-nitride nanotubes as a drug carrier: from encapsulation to releasing . RSC Adv . 2016 ; 6 ( 11 ): 9344 – 9351 . doi: 10.1039/C5RA22945F 

  39. 39. Mortazavifar A , Raissi H , Shahabi M . Comparative prediction of binding affinity of hydroxyurea anti-cancer to boron nitride and carbon nanotubes as smart targeted drug delivery vehicles . J Biomol Struct Dyn . 2019 ; 37 ( 18 ): 4852 – 4862 . doi: 10.1080/07391102.2019.1567385 30721644 

  40. 40. Roosta S , Hashemianzadeh SM , Ketabi S . Encapsulation of cisplatin as an anticancer drug into boron-nitride and carbon nanotubes: molecular simulation and free energy calculation . Mater Sci Eng C . 2016 ; 67 : 98 – 103 . doi: 10.1016/j.msec.2016.04.100 

  41. 41. Hasanzade Z , Raissi H . Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach . J Biomol Struct Dyn . 2020 ; 38 ( 3 ): 697 – 707 . doi: 10.1080/07391102.2019.1585951 30900530 

  42. 42. Zarghami MD , Bagheri B , Yousefi F , et al. Boron nitride nanotube as an antimicrobial peptide carrier: a theoretical insight . Int J Nanomedicine . 2021 ; 16 : 1837 . doi: 10.2147/IJN.S298699 33692624 

  43. 43. Iranmanesh‐Zarandy Z , Dehestani M . Molecular dynamics simulation of paracetamol drug adsorption on boron nitride nanotube: effects of temperature, nanotube length, diameter, and chirality . ChemistrySelect . 2019 ; 4 ( 27 ): 7866 – 7873 . doi: 10.1002/slct.201900644 

  44. 44. Sedghamiz E , Jamalizadeh E , Hosseini SMA , Sedghamiz T , Zahedi E . Molecular dynamics simulation of boron nitride nanotube as a drug carrier . Arab J Sci Eng . 2014 ; 39 ( 9 ): 6737 – 6742 . doi: 10.1007/s13369-014-1228-y 

  45. 45. El Khalifi M , Bentin J , Duverger E , Gharbi T , Boulahdour H , Picaud F . Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube . Phys Chem Chem Phys . 2016 ; 18 ( 36 ): 24994 – 25001 . doi: 10.1039/C6CP01387B 27711377 

  46. 46. Mehrjouei E , Akbarzadeh H , Shamkhali AN , Abbaspour M , Salemi S , Abdi P . Delivery of cisplatin anticancer drug from carbon, boron nitride, and silicon carbide nanotubes forced by Ag-nanowire: a comprehensive molecular dynamics study . Mol Pharm . 2017 ; 14 ( 7 ): 2273 – 2284 . doi: 10.1021/acs.molpharmaceut.7b00106 28595387 

  47. 47. Saikia N , Jha AN , Deka RC . Interaction of pyrazinamide drug functionalized carbon and boron nitride nanotubes with pncA protein: a molecular dynamics and density functional approach . RSC Adv . 2013 ; 3 ( 35 ): 15102 – 15107 . doi: 10.1039/c3ra42534g 

  48. 48. Katiyar RS , Jha PK . Molecular simulations in drug delivery: opportunities and challenges . Wiley Interdiscip Rev Comput Mol Sci . 2018 ; 8 : e1358 . 

  49. 49. Singh A , Vanga SK , Orsat V , Raghavan V . Application of molecular dynamic simulation to study food proteins: a review . Crit Rev Food Sci Nutr . 2018 ; 58 ( 16 ): 2779 – 2789 . doi: 10.1080/10408398.2017.1341864 28723250 

  50. 50. Bagheri B , Dehaghani MZ , Karami Z , et al. Correlation between surface topological defects and fracture mechanism of γ-graphyne-like boron nitride nanosheets . Comput Mater Sci . 2020 ; 110152 . 

  51. 51. Dehaghani MZ , Mashhadzadeh AH , Salmankhani A , et al. Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis . Eng Fract Mech . 2020 ; 235 : 107194 . doi: 10.1016/j.engfracmech.2020.107194 

  52. 52. Zarghami dehaghani M , Salmankhani A , Hamed mashhadzadeh A , Habibzadeh S , Abida O , Reza Saeb M . Fracture mechanics of polycrystalline beryllium oxide nanosheets: a theoretical basis . Eng Fract Mech . 2021 ; 244 : 107552 . doi: 10.1016/j.engfracmech.2021.107552 

  53. 53. Bagheri B , Dehaghani MZ , Safa ME , et al. Fracture fingerprint of polycrystalline C3N nanosheets: theoretical basis . J Mol Graph Model . 2021 ; 106 : 107899 . doi: 10.1016/j.jmgm.2021.107899 33857891 

  54. 54. Salmankhani A , Karami Z , Mashhadzadeh AH , et al. A theoretical scenario for the mechanical failure of boron carbide nanotubes . Comput Mater Sci . 2021 ; 186 : 110022 . doi: 10.1016/j.commatsci.2020.110022 

  55. 55. Albooyeh A , Dadrasi A , Mashhadzadeh AH . Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: a molecular dynamics study . Mater Chem Phys . 2020 ; 239 : 122107 . doi: 10.1016/j.matchemphys.2019.122107 

  56. 56. Zhu S , Aumelas A , Gao B . Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin . J Med Chem . 2011 ; 54 ( 4 ): 1091 – 1095 . doi: 10.1021/jm1010463 21222457 

  57. 57. Plimpton S . Fast parallel algorithms for short-range molecular dynamics . J Comput Phys . 1995 ; 117 ( 1 ): 1 – 19 . doi: 10.1006/jcph.1995.1039 

  58. 58. Park S , Schulten K . Calculating potentials of mean force from steered molecular dynamics simulations . J Chem Phys . 2004 ; 120 ( 13 ): 5946 – 5961 . doi: 10.1063/1.1651473 15267476 

  59. 59. Los J , Kroes J , Albe K , Gordillo R , Katsnelson M , Fasolino A . Extended tersoff potential for boron nitride: energetics and elastic properties of pristine and defective h-BN . Phys Rev B . 2017 ; 96 ( 18 ): 184108 . doi: 10.1103/PhysRevB.96.184108 

  60. 60. Hirschfelder JO , Curtiss CF , Bird RB , Mayer MG . Molecular Theory of Gases and Liquids . New York : Wiley ; 1964 . 

  61. 61. Humphrey W , Dalke A , Schulten K . VMD: visual molecular dynamics . J Mol Graph . 1996 ; 14 ( 1 ): 33 – 38 . doi: 10.1016/0263-7855(96)00018-5 8744570 

  62. 62. Sargsyan K , Grauffel C , Lim C . How molecular size impacts RMSD applications in molecular dynamics simulations . J Chem Theory Comput . 2017 ; 13 : 1518 – 1524 . 28267328 

  63. 63. Kang Y , Liu Y-C , Wang Q , Shen J-W , Wu T , Guan W-J . On the spontaneous encapsulation of proteins in carbon nanotubes . Biomaterials . 2009 ; 30 ( 14 ): 2807 – 2815 . doi: 10.1016/j.biomaterials.2009.01.024 19200595 

  64. 64. Veclani D , Melchior A . Adsorption of ciprofloxacin on carbon nanotubes: insights from molecular dynamics simulations . J Mol Liq . 2020 ; 298 : 111977 . doi: 10.1016/j.molliq.2019.111977 

  65. 65. Zhang D , Gullingsrud J , McCammon JA . Potentials of mean force for acetylcholine unbinding from the alpha7 nicotinic acetylcholine receptor ligand-binding domain . J Am Chem Soc . 2006 ; 128 ( 9 ): 3019 – 3026 . doi: 10.1021/ja057292u 16506783 

  66. 66. Zhang L , Peng G , Li J , et al. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes . J Mol Liq . 2018 ; 262 : 295 – 301 . doi: 10.1016/j.molliq.2018.04.097 

  67. 67. Shen J-W , Tang T , Wei X-H , et al. On the loading mechanism of ssDNA into carbon nanotubes . RSC Adv . 2015 ; 5 ( 70 ): 56896 – 56903 . doi: 10.1039/C5RA01941A 

  68. 68. Shen J-W , Wu T , Wang Q , Kang Y . Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces . Biomaterials . 2008 ; 29 ( 28 ): 3847 – 3855 . doi: 10.1016/j.biomaterials.2008.06.013 18617259 

  69. 69. Raffaini G , Ganazzoli F . Surface topography effects in protein adsorption on nanostructured carbon allotropes . Langmuir . 2013 ; 29 ( 15 ): 4883 – 4893 . doi: 10.1021/la3050779 23517008 

  70. 70. Raffaini G , Ganazzoli F . Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: a molecular dynamics study . J Chromatogr A . 2015 ; 1425 : 221 – 230 . doi: 10.1016/j.chroma.2015.11.045 26627588 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로