최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Combustion and flame, v.233, 2021년, pp.111585 -
Kang, Hyebin , Kim, Kyu Tae
초록이 없습니다.
Prog. Energy Combust. Sci. Beér 26 301 2000 10.1016/S0360-1285(00)00007-1 Combustion technology developments in power generation in response to environmental challenges
Prog. Energy Combust. Sci. Kinnon 64 62 2018 10.1016/j.pecs.2017.10.002 The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration
Proc. Combust. Inst. Masri 144 2021 Challenges for turbulent combustion
J. Goldmeer, J. Catillaz, Hydrogen for power generation, Report No. GEA34805, GE Gas Power, 2021. https://www.ge.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/future-of-energy/hydrogen-for-power-gen-gea34805.pdf.
ETN global, Hydrogen Gas Turbines - The path towards a zero-carbon gas turbine, 2020. https://etn.global/wp-content/uploads/2020/01/ETN-Hydrogen-Gas-Turbines-report.pdf.
J. Eng. Gas Turb. Power Gazzani 136 2014 10.1115/1.4026085 Using hydrogen as gas turbine fuel: premixed versus diffusive flame combustors
Appl. Energy Taamallah 154 1020 2015 10.1016/j.apenergy.2015.04.044 Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations
J. Eng. Gas Turb. Power Strollo 143 2021 10.1115/1.4049481 Effect of hydrogen on steady-state and transient combustion instability characteristics
Combust. Flame Æsøy 215 269 2020 10.1016/j.combustflame.2020.01.045 Scaling and prediction of transfer functions in lean premixed H2/CH4-flames
Combust. Flame Mohammadnejad 231 2021 10.1016/j.combustflame.2021.111481 Contributions of flame thickening and extinctions to a heat release rate marker of intensely turbulent premixed hydrogen-enriched methane-air flames
Combust. Flame Zhang 182 122 2017 10.1016/j.combustflame.2017.03.019 Assessing the predictions of a NOx kinetic mechanism on recent hydrogen and syngas experimental data
J. Eng. Gas Turb. Power Subash 143 2021 10.1115/1.4049499 Investigation of fuel and load flexibility in a Siemens gas turbine-600/700/800 burner under atmospheric pressure conditions using high-speed hydroxyl-PLIF and hydroxyl radical chemiluminescence imaging
J. Eng. Gas Turb. Power Funke 143 2021 10.1115/1.4049764 30 years of dry-low-NOx Micromix combustor research for hydrogen-rich fuels - an overview of past and present activities
Proc. Combust. Inst. Aspden 36 1997 2017 10.1016/j.proci.2016.07.053 A numerical study of diffusive effects in turbulent lean premixed hydrogen flames
Proc. Combust. Inst. Berger 37 1879 2019 10.1016/j.proci.2018.06.072 Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames
J. Eng. Gas Turb. Power Noble 143 2021 10.1115/1.4049346 Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future
Combust. Flame Ebi 168 39 2016 10.1016/j.combustflame.2016.03.027 Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames
Proc. Combust. Inst. Ranjan 2020 Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames
J. Eng. Gas Turb. Power Hoferichter 140 2018 10.1115/1.4038128 Boundary layer flashback in premixed hydrogen-air flames with acoustic excitation
J. Eng. Gas Turb. Power Sattelmayer 138 2016 10.1115/1.4031239 Interaction of flame flashback mechanisms in premixed hydrogen-air swirl flames
Combust. Flame Goldmann 226 362 2021 10.1016/j.combustflame.2020.12.021 Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames
J. Eng. Gas Turb. Power Reichel 137 2015 Increasing flashback resistance in lean premixed swirl-stabilized hydrogen combustion by axial air injection
Marek 2005 AIAA/ASME/SAE/ASEE Joint Propulsion Conference Proceedings, AIAA-2005-3776 Low emission hydrogen combustors for gas turbines using lean direct injection
Combust. Flame Urbano 169 129 2016 10.1016/j.combustflame.2016.03.020 Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector liquid rocket engine
Karim 2017 ASME Conference Proceedings, GT2017-63998 Staged combustion system for improved emissions operability and flexibility for 7HA class heavy duty gas turbine engine
Proc. Combust. Inst. Sirignano 37 5393 2019 10.1016/j.proci.2018.05.088 Nitrogen oxide emissions from rich premixed reacting jets in a vitiated crossflow
Combust. Flame Rodrigues 212 282 2020 10.1016/j.combustflame.2019.10.039 NOx reduction in an axially staged gas turbine model combustor through increase in the combustor exit Mach number
J. Eng. Gas Turb. Power Bothien 141 2019 10.1115/1.4045256 Toward decarbonized power generation with gas turbines by using sequential combustion for burning hydrogen
J. Eng. Gas Turb. Power York 135 2013 10.1115/1.4007733 Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines
Combust. Sci. Technol. Weiland 185 1132 2013 10.1080/00102202.2013.781164 Testing of a hydrogen diffusion flame array injector at gas turbine conditions
J. Eng. Gas Turb. Power Asai 137 2015 10.1115/1.4029614 Performance of multiple-injection dry low-NOx combustors on hydrogen-rich syngas fuel in an IGCC pilot plant
Int. J. Hydrogen Energ. Funke 44 6978 2019 10.1016/j.ijhydene.2019.01.161 An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications
Combust. Flame Noiray 145 435 2006 10.1016/j.combustflame.2006.01.006 Self-induced instabilities of premixed flames in a multiple injection configuration
Combust. Flame Rajasegar 199 324 2019 10.1016/j.combustflame.2018.10.020 Mesoscale burner array performance analysis
Energy Choi 192 2020 10.1016/j.energy.2019.116661 Effect of flame interaction on swirl-stabilized mesoscale burner array performance
Combust. Flame Chterev 225 149 2021 10.1016/j.combustflame.2020.10.033 Effect of hydrogen enrichment on the dynamics of a lean technically premixed elevated pressure flame
Proc. Combust. Inst. Kang 099 2021 Experimental investigation of combustion instabilities of a mesoscale multinozzle array in a lean-premixed combustor
Combust. Flame Jin 229 2021 10.1016/j.combustflame.2021.111410 Experimental investigation of combustion dynamics and NOx/CO emissions from densely distributed lean-premixed multinozzle CH4/C3H8/H2/air flames
Combust. Flame Lee 218 234 2020 10.1016/j.combustflame.2020.04.024 Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array
Combust. Flame Hawkes 138 242 2004 10.1016/j.combustflame.2004.04.010 Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames
Proc. Combust. Inst. Wicksall 30 2875 2005 10.1016/j.proci.2004.07.021 The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air
Proc. Combust. Inst. Strakey 31 3173 2007 10.1016/j.proci.2006.07.077 Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor
Proc. Combust. Inst. Guiberti 35 1385 2015 10.1016/j.proci.2014.06.016 Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames
Combust. Flame Ahn 203 170 2019 10.1016/j.combustflame.2019.02.008 Nonlinear mode transition mechanisms of a self-excited Jet A-1 spray flame
Combust. Flame Moon 202 405 2019 10.1016/j.combustflame.2019.01.027 Combustion-acoustic interactions through cross-talk area between adjacent model gas turbine combustors
Combust. Flame Meier 150 2 2007 10.1016/j.combustflame.2007.04.002 Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame
Combust. Flame Steinberg 157 2250 2010 10.1016/j.combustflame.2010.07.011 Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermoacoustically unstable gas turbine model combustor
Combust. Flame Balachandran 143 37 2005 10.1016/j.combustflame.2005.04.009 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations
Combust. Flame Palies 157 1698 2010 10.1016/j.combustflame.2010.02.011 The combined dynamics of swirler and turbulent premixed swirling flames
Combust. Flame Oberleithner 162 86 2015 10.1016/j.combustflame.2014.07.012 Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: a linear stability analysis
Proc. Combust. Inst. Lee 37 5137 2019 10.1016/j.proci.2018.05.110 The dynamics of multiple interacting swirl-stabilized flames in a lean-premixed gas turbine combustor
Combust. Flame Shin 159 3312 2012 10.1016/j.combustflame.2012.06.015 Flame wrinkle destruction processes in harmonically forced, laminar premixed flame
Proc. Combust. Inst. Shanbhogue 32 1787 2009 10.1016/j.proci.2008.06.034 Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing
Combust. Flame Steinbacher 199 411 2019 10.1016/j.combustflame.2018.10.039 Consequences of flame geometry for the acoustic response of premixed flames
Combust. Flame Dupuy 217 222 2020 10.1016/j.combustflame.2020.03.026 Combining analytical models and LES data to determine the transfer function from swirled premixed flames
J. Propul. Power Bellows 22 1075 2006 10.2514/1.17426 Forced response of a swirling, premixed flame to flow disturbances
Combust. Flame Palies 158 1980 2011 10.1016/j.combustflame.2011.02.012 Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames
Combust. Flame Worth 159 1109 2012 10.1016/j.combustflame.2011.09.006 Cinematographic OH-PLIF measurements of two interacting turbulent premixed flames with and without acoustic forcing
Combust. Flame Kim 160 1441 2013 10.1016/j.combustflame.2013.02.022 Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.