$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design 원문보기

Chem, v.7 no.7, 2021년, pp.1708 - 1754  

Shen, Huidong ,  Choi, Changhyeok ,  Masa, Justus ,  Li, Xin ,  Qiu, Jieshan ,  Jung, Yousung ,  Sun, Zhenyu

초록이 없습니다.

참고문헌 (175)

  1. Nature Andersen 570 504 2019 10.1038/s41586-019-1260-x A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements 

  2. Nature Ye 583 391 2020 10.1038/s41586-020-2464-9 Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst 

  3. Nat. Catal. Soloveichik 2 377 2019 10.1038/s41929-019-0280-0 Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process 

  4. J. Am. Chem. Soc. Liu 142 8142 2020 10.1021/jacs.0c01861 Mimicking the constrained geometry of a nitrogen-fixation intermediate 

  5. Nat. Catal. Foster 1 490 2018 10.1038/s41929-018-0092-7 Catalysts for nitrogen reduction to ammonia 

  6. Science Lancaster 334 974 2011 10.1126/science.1206445 X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor 

  7. Phil. Trans. R. Soc. Davy 97 1 1807 10.1098/rstl.1807.0001 I. The Bakerian Lecture, on some chemical agencies of electricity 

  8. Helv. Chim. Acta Fichter 5 246 1922 10.1002/hlca.19220050215 Zur Frage der kathodischen Reduktion Des elementaren Stickstoffs 

  9. ACS Energy Lett. MacLaughlin 4 1432 2019 10.1021/acsenergylett.9b01123 Role for standardization in electrocatalytic ammonia synthesis: a conversation with leo liu, Lauren Greenlee, and Douglas macfarlane 

  10. Science Marnellos 282 98 1998 10.1126/science.282.5386.98 Ammonia synthesis at atmospheric pressure 

  11. J. Chem. Phys. Rod 112 5343 2000 10.1063/1.481103 Ammonia synthesis at low temperatures 

  12. Chem Sun 3 560 2017 10.1016/j.chempr.2017.09.009 Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials 

  13. ACS Catal. Singh 9 8316 2019 10.1021/acscatal.9b02245 Strategies toward selective electrochemical ammonia synthesis 

  14. ACS Catal. Singh 7 706 2017 10.1021/acscatal.6b03035 Electrochemical ammonia synthesis-the selectivity challenge 

  15. Energy Environ. Sci. Zhou 10 2516 2017 10.1039/C7EE02716H Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids 

  16. J. Am. Chem. Soc. Chalkley 140 6122 2018 10.1021/jacs.8b02335 Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis 

  17. Nat. Catal. Hao 2 448 2019 10.1038/s41929-019-0241-7 Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water 

  18. Chem Ma 2 525 2017 10.1016/j.chempr.2017.03.016 Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage 

  19. Chem. Mater. Koh 32 1674 2020 10.1021/acs.chemmater.9b05313 Turning water from a hindrance to the promotor of preferential electrochemical nitrogen reduction 

  20. Nat. Commun. Wang 9 1795 2018 10.1038/s41467-018-04213-9 Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential 

  21. Appl. Catal. B Han 257 117896 2019 10.1016/j.apcatb.2019.117896 Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction 

  22. Jaecheol 

  23. Nat. Catal. Lazouski 3 463 2020 10.1038/s41929-020-0455-8 Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen 

  24. Nat. Chem. Kitano 4 934 2012 10.1038/nchem.1476 Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store 

  25. Adv. Energy Mater. Cui 8 2018 10.1002/aenm.201800369 A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions 

  26. Chem. Soc. Rev. van der Ham 43 5183 2014 10.1039/C4CS00085D Challenges in reduction of dinitrogen by proton and electron transfer 

  27. ACS Energy Lett. Hu 5 430 2020 10.1021/acsenergylett.9b02679 Understanding the electrocatalytic interface for ambient ammonia synthesis 

  28. Science Sippel 359 1484 2018 10.1126/science.aar2765 A bound reaction intermediate sheds light on the mechanism of nitrogenase 

  29. Phys. Chem. Chem. Phys. Skúlason 14 1235 2012 10.1039/C1CP22271F A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction 

  30. Nature Pool 427 527 2004 10.1038/nature02274 Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex 

  31. ACS Catal. Iwamoto 7 6924 2017 10.1021/acscatal.7b01624 Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2 

  32. Angew. Chem. Int. Ed. Engl. Yang 58 13768 2019 10.1002/anie.201906449 Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride 

  33. Phys. Chem. Chem. Phys. Abghoui 17 4909 2015 10.1039/C4CP04838E Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design 

  34. J. Am. Chem. Soc. Comer 140 15157 2018 10.1021/jacs.8b08464 The role of adventitious carbon in photo-catalytic nitrogen fixation by titania 

  35. Nano Energy Sun 62 869 2019 10.1016/j.nanoen.2019.06.019 Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure 

  36. Joule Yu 2 1610 2018 10.1016/j.joule.2018.06.007 Boron-doped graphene for electrocatalytic N2 reduction 

  37. J. Catal. Medford 328 36 2015 10.1016/j.jcat.2014.12.033 From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis 

  38. ChemSusChem Montoya 8 2180 2015 10.1002/cssc.201500322 The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations 

  39. Nat. Catal. Suryanto 2 290 2019 10.1038/s41929-019-0252-4 Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia 

  40. J. Electroanal. Chem. Interfacial Electrochem. Halmann 181 307 1984 10.1016/0368-1874(84)83639-4 Electrochemical reduction of molecular nitrogen to ammonia in aqueous alakli: a re-examination 

  41. Chem. Soc. Rev. Tang 48 3166 2019 10.1039/C9CS00280D How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully 

  42. Nat. Catal. Chen 3 1055 2020 10.1038/s41929-020-00527-4 Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis 

  43. Small Methods Chen 3 1800337 2019 10.1002/smtd.201800337 Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge 

  44. ACS Energy Lett. Choi 5 2095 2020 10.1021/acsenergylett.0c00924 Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: a potential source of ammonia in dinitrogen reduction studies 

  45. PLoS One Dabundo 9 e110335 2014 10.1371/journal.pone.0110335 The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements 

  46. ChemCatChem Shan 3 1286 2011 10.1002/cctc.201000409 The remarkable improvement of a Ce-Ti based catalyst for NO x abatement, prepared by a homogeneous precipitation method 

  47. Chem. Eng. Sci. Wang 145 133 2016 10.1016/j.ces.2016.02.018 Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82−) system 

  48. Water Res. Ivančič 18 1143 1984 10.1016/0043-1354(84)90230-6 An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method 

  49. J. Sci. Food Agric. Yuen 5 364 1954 10.1002/jsfa.2740050803 Determination of nitrogen in agricultural materials by the nessler reagent. II.-micro-determinations in plant tissue and in soil extracts 

  50. Can. J. Fish. Aquat. Sci. Bower 37 794 1980 10.1139/f80-106 A salicylate-hypochlorite method for determining ammonia in seawater 

  51. Pol. J. Environ. Stud. Michalski 15 5 2006 Determination of nitrogen species (nitrate, nitrite and ammonia ions) in environmental samples by ion chromatography 

  52. Biotechnol. Lett. LeDuy 4 303 1982 10.1007/BF00132830 Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge 

  53. Anal. Biochem. Cohn 14 434 1966 10.1016/0003-2697(66)90286-7 A fluorometric assay for glutathione 

  54. Proc. Natl. Acad. Sci. USA Liu 114 6450 2017 10.1073/pnas.1706371114 Ambient nitrogen reduction cycle using a hybrid inorganic-biological system 

  55. ACS Energy Lett. Hodgetts 5 736 2020 10.1021/acsenergylett.9b02812 Refining universal procedures for ammonium quantification via rapid 1H NMR analysis for dinitrogen reduction studies 

  56. ACS Energy Lett. Yu 5 1532 2020 10.1021/acsenergylett.0c00496 Isotopically selective quantification by UPLC-MS of aqueous ammonia at submicromolar concentrations using dansyl chloride derivatization 

  57. ACS Energy Lett. Yao 4 1336 2019 10.1021/acsenergylett.9b00699 Electrochemical nitrogen reduction reaction on ruthenium 

  58. Angew. Chem. Int. Ed. Engl. Yao 59 10479 2020 10.1002/anie.202003071 A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces 

  59. Anal. Chem. Watt 24 2006 1952 10.1021/ac60072a044 Spectrophotometric method for determination of hydrazine 

  60. Int. J. Hydrogen Energy Giddey 38 14576 2013 10.1016/j.ijhydene.2013.09.054 Review of electrochemical ammonia production technologies and materials 

  61. Angew. Chem. Int. Ed. Engl. Han 58 2321 2019 10.1002/anie.201811728 Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation 

  62. J. Am. Chem. Soc. Chen 139 9771 2017 10.1021/jacs.7b04393 Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy 

  63. J. Electroanal. Chem. Köleli 638 119 2010 10.1016/j.jelechem.2009.10.010 Low overpotential reduction of dinitrogen to ammonia in aqueous media 

  64. ChemCatChem Zhang 12 334 2020 10.1002/cctc.201901519 Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium 

  65. J. Phys. Chem. Ref. Data Battino 13 563 1984 10.1063/1.555713 The solubility of nitrogen and air in liquids 

  66. J. Phys. Chem. C Kang 123 21376 2019 10.1021/acs.jpcc.9b06000 High nitrogen gas solubility and physicochemical properties of [C4mpyr][eFAP]-fluorinated solvent mixtures 

  67. J. Electroanal. Chem. Tsuneto 367 183 1994 10.1016/0022-0728(93)03025-K Lithium-mediated electrochemical reduction of high pressure N2 to NH3 

  68. Appl. Catal. B Köleli 62 306 2006 10.1016/j.apcatb.2005.08.006 Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode 

  69. J. Electrochem. Soc. Kim 163 F610 2016 10.1149/2.0231607jes Communication -electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure 

  70. J. Electrochem. Soc. Kim 163 F1523 2016 10.1149/2.0741614jes Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure 

  71. Sci. Adv. Lee 4 eaar3208 2018 10.1126/sciadv.aar3208 Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach 

  72. Joule Lazouski 3 1127 2019 10.1016/j.joule.2019.02.003 Understanding continuous lithium-mediated electrochemical nitrogen reduction 

  73. J. Phys. Chem. C Kang 122 24550 2018 10.1021/acs.jpcc.8b07752 Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility 

  74. ACS Energy Lett. Suryanto 3 1219 2018 10.1021/acsenergylett.8b00487 Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions 

  75. Adv. Energy Mater. Yan 8 1800026 2018 10.1002/aenm.201800026 Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors 

  76. J. Phys. Chem. Lett. Ortuño 10 513 2019 10.1021/acs.jpclett.8b03409 Selective electrochemical nitrogen reduction driven by hydrogen bond interactions at metal-ionic liquid interfaces 

  77. J. Am. Chem. Soc. Li 138 8706 2016 10.1021/jacs.6b04778 Conversion of dinitrogen to ammonia by FeN3-embedded graphene 

  78. Science Einsle 297 1696 2002 10.1126/science.1073877 Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor 

  79. Science Yandulov 301 76 2003 10.1126/science.1085326 Catalytic reduction of dinitrogen to ammonia at a single molybdenum center 

  80. Phys. Chem. Chem. Phys. Back 18 9161 2016 10.1039/C5CP07363D On the mechanism of electrochemical ammonia synthesis on the Ru catalyst 

  81. J. Am. Chem. Soc. Ling 141 18264 2019 10.1021/jacs.9b09232 New mechanism for N2 reduction: the essential role of surface hydrogenation 

  82. J. Am. Chem. Soc. Yang 140 13387 2018 10.1021/jacs.8b08379 Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles 

  83. J. Am. Chem. Soc. Yao 140 1496 2018 10.1021/jacs.7b12101 A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces 

  84. J. Mater. Chem. A Zeng 8 7339 2020 10.1039/C9TA13336D Unique hollow Ni-Fe@MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3 

  85. Adv. Funct. Mater. Lai 30 1907376 2020 10.1002/adfm.201907376 Refining energy levels in ReS2 nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production 

  86. ACS Appl. Mater. Interfaces Lv 12 17502 2020 10.1021/acsami.0c00647 Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis 

  87. Appl. Catal. B Ren 266 118633 2020 10.1016/j.apcatb.2020.118633 Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms 

  88. Nano Res. Yuan 13 1376 2020 10.1007/s12274-020-2637-8 Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia 

  89. Nano Lett. Fu 20 4960 2020 10.1021/acs.nanolett.0c01037 Dual-metal-driven selective pathway of nitrogen reduction in orderly atomic-hybridized Re2MnS6 ultrathin nanosheets 

  90. Adv. Energy Mater. Yao 10 2001289 2020 10.1002/aenm.202001289 In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction 

  91. Angew. Chem. Int. Ed. Engl. Xu 59 3511 2020 10.1002/anie.201914335 Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions 

  92. Phys. Chem. Chem. Phys. Valov 13 3394 2011 10.1039/c0cp01024c Electrochemical activation of molecular nitrogen at the Ir/YSZ interface 

  93. J. Am. Chem. Soc. Xue 141 14976 2019 10.1021/jacs.9b07963 Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency 

  94. Nanoscale Liu 12 1811 2020 10.1039/C9NR08788E Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction 

  95. Angew. Chem. Int. Ed. Engl. Zhang 59 8066 2020 10.1002/anie.201915747 Surface-regulated rhodium-antimony nanorods for nitrogen fixation 

  96. Angew. Chem. Int. Ed. Engl. Sim 59 16997 2020 10.1002/anie.202006071 ZIF-induced d-band modification in a bimetallic nanocatalyst: achieving over 44 % efficiency in the ambient nitrogen reduction reaction 

  97. Angew. Chem. Int. Ed. Engl. Wang 58 9464 2019 10.1002/anie.201903969 Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia 

  98. Adv. Energy Mater. Fang 9 1803406 2019 10.1002/aenm.201803406 High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene 

  99. Small Methods Huang 3 1800386 2019 10.1002/smtd.201800386 NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation 

  100. Catal. Today Abghoui 286 78 2017 10.1016/j.cattod.2016.06.009 Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III-VII transition metal mononitrides 

  101. Adv. Mater. Jin 31 1902709 2019 10.1002/adma.201902709 Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction 

  102. ACS Energy Lett. Hu 4 1053 2019 10.1021/acsenergylett.9b00648 Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition? 

  103. Chem Peng 5 18 2019 10.1016/j.chempr.2018.08.037 Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis 

  104. Nanoscale Wang 12 538 2020 10.1039/C9NR09157B Highly efficient N2 fixation catalysts: transition-metal carbides M2C (MXenes) 

  105. Phys. Chem. Chem. Phys. Matanovic 20 14679 2018 10.1039/C8CP01643G Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study 

  106. Mater. Today Zhang 40 18 2020 10.1016/j.mattod.2020.04.031 Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction 

  107. Adv. Energy Mater. Li 8 1801357 2018 10.1002/aenm.201801357 Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower 

  108. Adv. Energy Mater. Liu 9 1803935 2019 10.1002/aenm.201803935 Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst 

  109. ACS Catal. Wang 10 4914 2020 10.1021/acscatal.0c00271 Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia 

  110. Angew. Chem. Int. Ed. Engl. Lai 59 13320 2020 10.1002/anie.202003129 N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface 

  111. J. Catal. Wang 381 78 2020 10.1016/j.jcat.2019.10.029 Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions 

  112. Angew. Chem. Int. Ed. Engl. Sun 57 7610 2018 10.1002/anie.201710509 Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges 

  113. Chem Lv 6 2690 2020 10.1016/j.chempr.2020.07.006 Boosting electrocatalytic ammonia production through mimicking “π back-donation” 

  114. Angew. Chem. Int. Ed. Engl. Lv 57 6073 2018 10.1002/anie.201801538 An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions 

  115. Angew. Chem. Int. Ed. Engl. Liu 58 13329 2019 10.1002/anie.201906521 Antimony-based composites loaded on phosphorus-doped carbon for boosting faradaic efficiency of the electrochemical nitrogen reduction reaction 

  116. Angew. Chem. Int. Ed. Engl. Fang 59 13021 2020 10.1002/anie.202004213 Graphdiyne interface engineering: highly active and selective ammonia synthesis 

  117. ACS Catal. Choi 8 7517 2018 10.1021/acscatal.8b00905 Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline 

  118. Chem Tao 5 204 2019 10.1016/j.chempr.2018.10.007 Nitrogen fixation by Ru single-atom electrocatalytic reduction 

  119. Nano Energy Lü 61 420 2019 10.1016/j.nanoen.2019.04.092 Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media 

  120. ACS Catal. Wang 9 336 2019 10.1021/acscatal.8b03802 Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution 

  121. Nat. Commun. Wang 10 341 2019 10.1038/s41467-018-08120-x Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential 

  122. Angew. Chem. Int. Ed. Engl. Zhang 59 13423 2020 10.1002/anie.202005930 Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia 

  123. Sci. Bull. Wang 63 1246 2018 10.1016/j.scib.2018.07.005 Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia 

  124. Chem. Commun. Chen 55 3152 2019 10.1039/C9CC00461K Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions 

  125. ACS Energy Lett. Liu 5 2590 2020 10.1021/acsenergylett.0c01317 Nanostructured and boron-doped diamond as an electrocatalyst for nitrogen fixation 

  126. Chem. Commun. Fan 55 4246 2019 10.1039/C9CC00985J High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction 

  127. Science Légaré 359 896 2018 10.1126/science.aaq1684 Nitrogen fixation and reduction at boron 

  128. Angew. Chem. Int. Ed. Engl. Lv 57 10246 2018 10.1002/anie.201806386 Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions 

  129. Angew. Chem. Int. Ed. Engl. Zhang 58 2612 2019 10.1002/anie.201813174 Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets 

  130. J. Mater. Chem. A Xu 8 15875 2020 10.1039/D0TA03237A Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis 

  131. Chem. Mater. Zhang 29 6445 2017 10.1021/acs.chemmater.7b01991 Exfoliation of stable 2D black phosphorus for device fabrication 

  132. Angew. Chem. Int. Ed. Engl. Liu 59 14383 2020 10.1002/anie.202006679 Crystalline red phosphorus nanoribbons: large-scale synthesis and electrochemical nitrogen fixation 

  133. Nat. Commun. Qiu 9 3485 2018 10.1038/s41467-018-05758-5 High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst 

  134. J. Am. Chem. Soc. Liu 141 2884 2019 10.1021/jacs.8b13165 Single-boron catalysts for nitrogen reduction reaction 

  135. ACS Catal. Liu 10 1847 2020 10.1021/acscatal.9b04103 Isolated boron sites for electroreduction of dinitrogen to ammonia 

  136. ChemSusChem Abghoui 12 4265 2019 10.1002/cssc.201901429 Biomimetic nitrogen fixation catalyzed by transition metal sulfide surfaces in an electrolytic cell 

  137. J. Mater. Chem. A Gu 7 17096 2019 10.1039/C9TA02356A Machine learning for renewable energy materials 

  138. Chem. Mater. Kim 32 709 2020 10.1021/acs.chemmater.9b03686 Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts 

  139. J. Mater. Chem. A Zafari 8 5209 2020 10.1039/C9TA12608B Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts 

  140. J. Phys. Chem. Lett. Hoar 11 4625 2020 10.1021/acs.jpclett.0c01128 Machine-learning-enabled exploration of morphology influence on wire-array electrodes for electrochemical nitrogen fixation 

  141. Chem. Sci. Noh 11 4871 2020 10.1039/D0SC00594K Machine-enabled inverse design of inorganic solid materials: promises and challenges 

  142. Phys. Rev. Lett. Xie 120 145301 2018 10.1103/PhysRevLett.120.145301 Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties 

  143. Logan 2011 A First Course in the Finite Element Method 

  144. Goodfellow 2016 Deep Learning 

  145. ChemSusChem Wang 11 3416 2018 10.1002/cssc.201801632 Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions 

  146. Adv. Mater. Bao 29 1604799 2017 10.1002/adma.201604799 Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle 

  147. Nat. Commun. Choi 11 5546 2020 10.1038/s41467-020-19130-z Identification and elimination of false positives in electrochemical nitrogen reduction studies 

  148. ACS Catal. Tayyebi 9 11137 2019 10.1021/acscatal.9b03903 Elucidating the mechanism of electrochemical N2 reduction at the Ru(0001) electrode 

  149. Phys. Chem. Chem. Phys. Chen 21 17605 2019 10.1039/C9CP03187A Mechanism and kinetics for both thermal and electrochemical reduction of N2 catalysed by Ru(0001) based on quantum mechanics 

  150. Phys. Chem. Chem. Phys. Zhang 20 4982 2018 10.1039/C7CP05484J A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis 

  151. Nat. Commun. Ulissi 8 14621 2017 10.1038/ncomms14621 To address surface reaction network complexity using scaling relations machine learning and DFT calculations 

  152. J. Am. Chem. Soc. Jang 142 18836 2020 10.1021/jacs.0c07384 Structure-based synthesizability prediction of crystals using partially supervised learning 

  153. Adv. Mater. Yang 32 e2001267 2020 10.1002/adma.202001267 A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals 

  154. Nano Energy Zhang 68 104323 2020 10.1016/j.nanoen.2019.104323 Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range 

  155. Adv. Energy Mater. Jin 10 2000797 2020 10.1002/aenm.202000797 Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction 

  156. Nano Energy Xia 72 104681 2020 10.1016/j.nanoen.2020.104681 Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2 

  157. Angew. Chem. Int. Ed. Engl. Ahmed 59 21465 2020 10.1002/anie.202009435 Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction 

  158. ACS Catal. Zou 9 10649 2019 10.1021/acscatal.9b02794 Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions 

  159. Angew. Chem. Int. Ed. Engl. Yang 59 4525 2020 10.1002/anie.201915001 The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction 

  160. ACS Sustainable Chem. Eng. Yang 8 2957 2020 10.1021/acssuschemeng.9b07526 Metal-tuned W18O49 for efficient electrocatalytic N2 reduction 

  161. Angew. Chem. Int. Ed. Engl. Wu 58 18449 2019 10.1002/anie.201911153 Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping 

  162. J. Mater. Chem. A Chu 8 5865 2020 10.1039/C9TA14260F Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation 

  163. Adv. Energy Mater. Shi 8 1800124 2018 10.1002/aenm.201800124 Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution 

  164. J. Mater. Chem. A Yang 5 18967 2017 10.1039/C7TA06139K Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm 

  165. Nano Energy Nazemi 49 316 2018 10.1016/j.nanoen.2018.04.039 Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages 

  166. Chem Huang 5 15 2019 10.1016/j.chempr.2018.12.015 Tuning active sites of MXene for efficient electrocatalytic N2 fixation 

  167. Adv. Mater. Zhang 30 e1800191 2018 10.1002/adma.201800191 Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies 

  168. Electrochim. Acta Guo 284 392 2018 10.1016/j.electacta.2018.07.168 Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene 

  169. ACS Sustain. Chem. Eng. Li 7 8853 2019 10.1021/acssuschemeng.9b00852 In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation 

  170. Appl. Catal. B Yang 264 118477 2020 10.1016/j.apcatb.2019.118477 Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction 

  171. Appl. Catal. B Chu 267 118693 2020 10.1016/j.apcatb.2020.118693 Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction 

  172. Angew. Chem. Int. Ed. Engl. Tong 59 2649 2020 10.1002/anie.201913122 Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis 

  173. Chem Li 6 885 2020 10.1016/j.chempr.2020.01.013 Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions 

  174. Angew. Chem. Int. Ed. Engl. Zheng 58 18604 2019 10.1002/anie.201909477 Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation 

  175. Joule McPherson 4 12 2020 10.1016/j.joule.2019.12.013 Can electrification of ammonia synthesis decrease its carbon footprint? 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로