최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Chem, v.7 no.7, 2021년, pp.1708 - 1754
Shen, Huidong , Choi, Changhyeok , Masa, Justus , Li, Xin , Qiu, Jieshan , Jung, Yousung , Sun, Zhenyu
초록이 없습니다.
Nature Andersen 570 504 2019 10.1038/s41586-019-1260-x A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
Nature Ye 583 391 2020 10.1038/s41586-020-2464-9 Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst
Nat. Catal. Soloveichik 2 377 2019 10.1038/s41929-019-0280-0 Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process
J. Am. Chem. Soc. Liu 142 8142 2020 10.1021/jacs.0c01861 Mimicking the constrained geometry of a nitrogen-fixation intermediate
Nat. Catal. Foster 1 490 2018 10.1038/s41929-018-0092-7 Catalysts for nitrogen reduction to ammonia
Science Lancaster 334 974 2011 10.1126/science.1206445 X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor
Phil. Trans. R. Soc. Davy 97 1 1807 10.1098/rstl.1807.0001 I. The Bakerian Lecture, on some chemical agencies of electricity
Helv. Chim. Acta Fichter 5 246 1922 10.1002/hlca.19220050215 Zur Frage der kathodischen Reduktion Des elementaren Stickstoffs
ACS Energy Lett. MacLaughlin 4 1432 2019 10.1021/acsenergylett.9b01123 Role for standardization in electrocatalytic ammonia synthesis: a conversation with leo liu, Lauren Greenlee, and Douglas macfarlane
Science Marnellos 282 98 1998 10.1126/science.282.5386.98 Ammonia synthesis at atmospheric pressure
J. Chem. Phys. Rod 112 5343 2000 10.1063/1.481103 Ammonia synthesis at low temperatures
Chem Sun 3 560 2017 10.1016/j.chempr.2017.09.009 Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials
ACS Catal. Singh 9 8316 2019 10.1021/acscatal.9b02245 Strategies toward selective electrochemical ammonia synthesis
ACS Catal. Singh 7 706 2017 10.1021/acscatal.6b03035 Electrochemical ammonia synthesis-the selectivity challenge
Energy Environ. Sci. Zhou 10 2516 2017 10.1039/C7EE02716H Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
J. Am. Chem. Soc. Chalkley 140 6122 2018 10.1021/jacs.8b02335 Fe-mediated nitrogen fixation with a metallocene mediator: exploring pKa effects and demonstrating electrocatalysis
Nat. Catal. Hao 2 448 2019 10.1038/s41929-019-0241-7 Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
Chem Ma 2 525 2017 10.1016/j.chempr.2017.03.016 Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage
Chem. Mater. Koh 32 1674 2020 10.1021/acs.chemmater.9b05313 Turning water from a hindrance to the promotor of preferential electrochemical nitrogen reduction
Nat. Commun. Wang 9 1795 2018 10.1038/s41467-018-04213-9 Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
Appl. Catal. B Han 257 117896 2019 10.1016/j.apcatb.2019.117896 Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction
Jaecheol
Nat. Catal. Lazouski 3 463 2020 10.1038/s41929-020-0455-8 Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen
Nat. Chem. Kitano 4 934 2012 10.1038/nchem.1476 Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store
Adv. Energy Mater. Cui 8 2018 10.1002/aenm.201800369 A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
Chem. Soc. Rev. van der Ham 43 5183 2014 10.1039/C4CS00085D Challenges in reduction of dinitrogen by proton and electron transfer
ACS Energy Lett. Hu 5 430 2020 10.1021/acsenergylett.9b02679 Understanding the electrocatalytic interface for ambient ammonia synthesis
Science Sippel 359 1484 2018 10.1126/science.aar2765 A bound reaction intermediate sheds light on the mechanism of nitrogenase
Phys. Chem. Chem. Phys. Skúlason 14 1235 2012 10.1039/C1CP22271F A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction
Nature Pool 427 527 2004 10.1038/nature02274 Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex
ACS Catal. Iwamoto 7 6924 2017 10.1021/acscatal.7b01624 Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2
Angew. Chem. Int. Ed. Engl. Yang 58 13768 2019 10.1002/anie.201906449 Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride
Phys. Chem. Chem. Phys. Abghoui 17 4909 2015 10.1039/C4CP04838E Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design
J. Am. Chem. Soc. Comer 140 15157 2018 10.1021/jacs.8b08464 The role of adventitious carbon in photo-catalytic nitrogen fixation by titania
Nano Energy Sun 62 869 2019 10.1016/j.nanoen.2019.06.019 Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure
Joule Yu 2 1610 2018 10.1016/j.joule.2018.06.007 Boron-doped graphene for electrocatalytic N2 reduction
J. Catal. Medford 328 36 2015 10.1016/j.jcat.2014.12.033 From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
ChemSusChem Montoya 8 2180 2015 10.1002/cssc.201500322 The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations
Nat. Catal. Suryanto 2 290 2019 10.1038/s41929-019-0252-4 Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia
J. Electroanal. Chem. Interfacial Electrochem. Halmann 181 307 1984 10.1016/0368-1874(84)83639-4 Electrochemical reduction of molecular nitrogen to ammonia in aqueous alakli: a re-examination
Chem. Soc. Rev. Tang 48 3166 2019 10.1039/C9CS00280D How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
Nat. Catal. Chen 3 1055 2020 10.1038/s41929-020-00527-4 Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis
Small Methods Chen 3 1800337 2019 10.1002/smtd.201800337 Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge
ACS Energy Lett. Choi 5 2095 2020 10.1021/acsenergylett.0c00924 Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: a potential source of ammonia in dinitrogen reduction studies
PLoS One Dabundo 9 e110335 2014 10.1371/journal.pone.0110335 The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements
ChemCatChem Shan 3 1286 2011 10.1002/cctc.201000409 The remarkable improvement of a Ce-Ti based catalyst for NO x abatement, prepared by a homogeneous precipitation method
Chem. Eng. Sci. Wang 145 133 2016 10.1016/j.ces.2016.02.018 Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82−) system
Water Res. Ivančič 18 1143 1984 10.1016/0043-1354(84)90230-6 An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method
J. Sci. Food Agric. Yuen 5 364 1954 10.1002/jsfa.2740050803 Determination of nitrogen in agricultural materials by the nessler reagent. II.-micro-determinations in plant tissue and in soil extracts
Can. J. Fish. Aquat. Sci. Bower 37 794 1980 10.1139/f80-106 A salicylate-hypochlorite method for determining ammonia in seawater
Pol. J. Environ. Stud. Michalski 15 5 2006 Determination of nitrogen species (nitrate, nitrite and ammonia ions) in environmental samples by ion chromatography
Biotechnol. Lett. LeDuy 4 303 1982 10.1007/BF00132830 Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge
Anal. Biochem. Cohn 14 434 1966 10.1016/0003-2697(66)90286-7 A fluorometric assay for glutathione
Proc. Natl. Acad. Sci. USA Liu 114 6450 2017 10.1073/pnas.1706371114 Ambient nitrogen reduction cycle using a hybrid inorganic-biological system
ACS Energy Lett. Hodgetts 5 736 2020 10.1021/acsenergylett.9b02812 Refining universal procedures for ammonium quantification via rapid 1H NMR analysis for dinitrogen reduction studies
ACS Energy Lett. Yu 5 1532 2020 10.1021/acsenergylett.0c00496 Isotopically selective quantification by UPLC-MS of aqueous ammonia at submicromolar concentrations using dansyl chloride derivatization
ACS Energy Lett. Yao 4 1336 2019 10.1021/acsenergylett.9b00699 Electrochemical nitrogen reduction reaction on ruthenium
Angew. Chem. Int. Ed. Engl. Yao 59 10479 2020 10.1002/anie.202003071 A spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces
Anal. Chem. Watt 24 2006 1952 10.1021/ac60072a044 Spectrophotometric method for determination of hydrazine
Int. J. Hydrogen Energy Giddey 38 14576 2013 10.1016/j.ijhydene.2013.09.054 Review of electrochemical ammonia production technologies and materials
Angew. Chem. Int. Ed. Engl. Han 58 2321 2019 10.1002/anie.201811728 Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
J. Am. Chem. Soc. Chen 139 9771 2017 10.1021/jacs.7b04393 Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy
J. Electroanal. Chem. Köleli 638 119 2010 10.1016/j.jelechem.2009.10.010 Low overpotential reduction of dinitrogen to ammonia in aqueous media
ChemCatChem Zhang 12 334 2020 10.1002/cctc.201901519 Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium
J. Phys. Chem. Ref. Data Battino 13 563 1984 10.1063/1.555713 The solubility of nitrogen and air in liquids
J. Phys. Chem. C Kang 123 21376 2019 10.1021/acs.jpcc.9b06000 High nitrogen gas solubility and physicochemical properties of [C4mpyr][eFAP]-fluorinated solvent mixtures
J. Electroanal. Chem. Tsuneto 367 183 1994 10.1016/0022-0728(93)03025-K Lithium-mediated electrochemical reduction of high pressure N2 to NH3
Appl. Catal. B Köleli 62 306 2006 10.1016/j.apcatb.2005.08.006 Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode
J. Electrochem. Soc. Kim 163 F610 2016 10.1149/2.0231607jes Communication -electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure
J. Electrochem. Soc. Kim 163 F1523 2016 10.1149/2.0741614jes Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure
Sci. Adv. Lee 4 eaar3208 2018 10.1126/sciadv.aar3208 Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach
Joule Lazouski 3 1127 2019 10.1016/j.joule.2019.02.003 Understanding continuous lithium-mediated electrochemical nitrogen reduction
J. Phys. Chem. C Kang 122 24550 2018 10.1021/acs.jpcc.8b07752 Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility
ACS Energy Lett. Suryanto 3 1219 2018 10.1021/acsenergylett.8b00487 Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions
Adv. Energy Mater. Yan 8 1800026 2018 10.1002/aenm.201800026 Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors
J. Phys. Chem. Lett. Ortuño 10 513 2019 10.1021/acs.jpclett.8b03409 Selective electrochemical nitrogen reduction driven by hydrogen bond interactions at metal-ionic liquid interfaces
J. Am. Chem. Soc. Li 138 8706 2016 10.1021/jacs.6b04778 Conversion of dinitrogen to ammonia by FeN3-embedded graphene
Science Einsle 297 1696 2002 10.1126/science.1073877 Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor
Science Yandulov 301 76 2003 10.1126/science.1085326 Catalytic reduction of dinitrogen to ammonia at a single molybdenum center
Phys. Chem. Chem. Phys. Back 18 9161 2016 10.1039/C5CP07363D On the mechanism of electrochemical ammonia synthesis on the Ru catalyst
J. Am. Chem. Soc. Ling 141 18264 2019 10.1021/jacs.9b09232 New mechanism for N2 reduction: the essential role of surface hydrogenation
J. Am. Chem. Soc. Yang 140 13387 2018 10.1021/jacs.8b08379 Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles
J. Am. Chem. Soc. Yao 140 1496 2018 10.1021/jacs.7b12101 A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
J. Mater. Chem. A Zeng 8 7339 2020 10.1039/C9TA13336D Unique hollow Ni-Fe@MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3
Adv. Funct. Mater. Lai 30 1907376 2020 10.1002/adfm.201907376 Refining energy levels in ReS2 nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production
ACS Appl. Mater. Interfaces Lv 12 17502 2020 10.1021/acsami.0c00647 Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Appl. Catal. B Ren 266 118633 2020 10.1016/j.apcatb.2020.118633 Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms
Nano Res. Yuan 13 1376 2020 10.1007/s12274-020-2637-8 Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia
Nano Lett. Fu 20 4960 2020 10.1021/acs.nanolett.0c01037 Dual-metal-driven selective pathway of nitrogen reduction in orderly atomic-hybridized Re2MnS6 ultrathin nanosheets
Adv. Energy Mater. Yao 10 2001289 2020 10.1002/aenm.202001289 In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction
Angew. Chem. Int. Ed. Engl. Xu 59 3511 2020 10.1002/anie.201914335 Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions
Phys. Chem. Chem. Phys. Valov 13 3394 2011 10.1039/c0cp01024c Electrochemical activation of molecular nitrogen at the Ir/YSZ interface
J. Am. Chem. Soc. Xue 141 14976 2019 10.1021/jacs.9b07963 Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency
Nanoscale Liu 12 1811 2020 10.1039/C9NR08788E Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction
Angew. Chem. Int. Ed. Engl. Zhang 59 8066 2020 10.1002/anie.201915747 Surface-regulated rhodium-antimony nanorods for nitrogen fixation
Angew. Chem. Int. Ed. Engl. Sim 59 16997 2020 10.1002/anie.202006071 ZIF-induced d-band modification in a bimetallic nanocatalyst: achieving over 44 % efficiency in the ambient nitrogen reduction reaction
Angew. Chem. Int. Ed. Engl. Wang 58 9464 2019 10.1002/anie.201903969 Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia
Adv. Energy Mater. Fang 9 1803406 2019 10.1002/aenm.201803406 High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene
Small Methods Huang 3 1800386 2019 10.1002/smtd.201800386 NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation
Catal. Today Abghoui 286 78 2017 10.1016/j.cattod.2016.06.009 Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III-VII transition metal mononitrides
Adv. Mater. Jin 31 1902709 2019 10.1002/adma.201902709 Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction
ACS Energy Lett. Hu 4 1053 2019 10.1021/acsenergylett.9b00648 Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition?
Chem Peng 5 18 2019 10.1016/j.chempr.2018.08.037 Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis
Nanoscale Wang 12 538 2020 10.1039/C9NR09157B Highly efficient N2 fixation catalysts: transition-metal carbides M2C (MXenes)
Phys. Chem. Chem. Phys. Matanovic 20 14679 2018 10.1039/C8CP01643G Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study
Mater. Today Zhang 40 18 2020 10.1016/j.mattod.2020.04.031 Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction
Adv. Energy Mater. Li 8 1801357 2018 10.1002/aenm.201801357 Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower
Adv. Energy Mater. Liu 9 1803935 2019 10.1002/aenm.201803935 Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li-S interactions on MoS2 electrocatalyst
ACS Catal. Wang 10 4914 2020 10.1021/acscatal.0c00271 Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia
Angew. Chem. Int. Ed. Engl. Lai 59 13320 2020 10.1002/anie.202003129 N2 electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface
J. Catal. Wang 381 78 2020 10.1016/j.jcat.2019.10.029 Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions
Angew. Chem. Int. Ed. Engl. Sun 57 7610 2018 10.1002/anie.201710509 Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges
Chem Lv 6 2690 2020 10.1016/j.chempr.2020.07.006 Boosting electrocatalytic ammonia production through mimicking “π back-donation”
Angew. Chem. Int. Ed. Engl. Lv 57 6073 2018 10.1002/anie.201801538 An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions
Angew. Chem. Int. Ed. Engl. Liu 58 13329 2019 10.1002/anie.201906521 Antimony-based composites loaded on phosphorus-doped carbon for boosting faradaic efficiency of the electrochemical nitrogen reduction reaction
Angew. Chem. Int. Ed. Engl. Fang 59 13021 2020 10.1002/anie.202004213 Graphdiyne interface engineering: highly active and selective ammonia synthesis
ACS Catal. Choi 8 7517 2018 10.1021/acscatal.8b00905 Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline
Chem Tao 5 204 2019 10.1016/j.chempr.2018.10.007 Nitrogen fixation by Ru single-atom electrocatalytic reduction
Nano Energy Lü 61 420 2019 10.1016/j.nanoen.2019.04.092 Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media
ACS Catal. Wang 9 336 2019 10.1021/acscatal.8b03802 Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution
Nat. Commun. Wang 10 341 2019 10.1038/s41467-018-08120-x Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential
Angew. Chem. Int. Ed. Engl. Zhang 59 13423 2020 10.1002/anie.202005930 Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia
Sci. Bull. Wang 63 1246 2018 10.1016/j.scib.2018.07.005 Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia
Chem. Commun. Chen 55 3152 2019 10.1039/C9CC00461K Sulfur dots-graphene nanohybrid: a metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions
ACS Energy Lett. Liu 5 2590 2020 10.1021/acsenergylett.0c01317 Nanostructured and boron-doped diamond as an electrocatalyst for nitrogen fixation
Chem. Commun. Fan 55 4246 2019 10.1039/C9CC00985J High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction
Science Légaré 359 896 2018 10.1126/science.aaq1684 Nitrogen fixation and reduction at boron
Angew. Chem. Int. Ed. Engl. Lv 57 10246 2018 10.1002/anie.201806386 Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions
Angew. Chem. Int. Ed. Engl. Zhang 58 2612 2019 10.1002/anie.201813174 Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets
J. Mater. Chem. A Xu 8 15875 2020 10.1039/D0TA03237A Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis
Chem. Mater. Zhang 29 6445 2017 10.1021/acs.chemmater.7b01991 Exfoliation of stable 2D black phosphorus for device fabrication
Angew. Chem. Int. Ed. Engl. Liu 59 14383 2020 10.1002/anie.202006679 Crystalline red phosphorus nanoribbons: large-scale synthesis and electrochemical nitrogen fixation
Nat. Commun. Qiu 9 3485 2018 10.1038/s41467-018-05758-5 High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
J. Am. Chem. Soc. Liu 141 2884 2019 10.1021/jacs.8b13165 Single-boron catalysts for nitrogen reduction reaction
ACS Catal. Liu 10 1847 2020 10.1021/acscatal.9b04103 Isolated boron sites for electroreduction of dinitrogen to ammonia
ChemSusChem Abghoui 12 4265 2019 10.1002/cssc.201901429 Biomimetic nitrogen fixation catalyzed by transition metal sulfide surfaces in an electrolytic cell
J. Mater. Chem. A Gu 7 17096 2019 10.1039/C9TA02356A Machine learning for renewable energy materials
Chem. Mater. Kim 32 709 2020 10.1021/acs.chemmater.9b03686 Artificial intelligence to accelerate the discovery of N2 electroreduction catalysts
J. Mater. Chem. A Zafari 8 5209 2020 10.1039/C9TA12608B Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts
J. Phys. Chem. Lett. Hoar 11 4625 2020 10.1021/acs.jpclett.0c01128 Machine-learning-enabled exploration of morphology influence on wire-array electrodes for electrochemical nitrogen fixation
Chem. Sci. Noh 11 4871 2020 10.1039/D0SC00594K Machine-enabled inverse design of inorganic solid materials: promises and challenges
Phys. Rev. Lett. Xie 120 145301 2018 10.1103/PhysRevLett.120.145301 Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
Logan 2011 A First Course in the Finite Element Method
Goodfellow 2016 Deep Learning
ChemSusChem Wang 11 3416 2018 10.1002/cssc.201801632 Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions
Adv. Mater. Bao 29 1604799 2017 10.1002/adma.201604799 Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle
Nat. Commun. Choi 11 5546 2020 10.1038/s41467-020-19130-z Identification and elimination of false positives in electrochemical nitrogen reduction studies
ACS Catal. Tayyebi 9 11137 2019 10.1021/acscatal.9b03903 Elucidating the mechanism of electrochemical N2 reduction at the Ru(0001) electrode
Phys. Chem. Chem. Phys. Chen 21 17605 2019 10.1039/C9CP03187A Mechanism and kinetics for both thermal and electrochemical reduction of N2 catalysed by Ru(0001) based on quantum mechanics
Phys. Chem. Chem. Phys. Zhang 20 4982 2018 10.1039/C7CP05484J A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis
Nat. Commun. Ulissi 8 14621 2017 10.1038/ncomms14621 To address surface reaction network complexity using scaling relations machine learning and DFT calculations
J. Am. Chem. Soc. Jang 142 18836 2020 10.1021/jacs.0c07384 Structure-based synthesizability prediction of crystals using partially supervised learning
Adv. Mater. Yang 32 e2001267 2020 10.1002/adma.202001267 A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals
Nano Energy Zhang 68 104323 2020 10.1016/j.nanoen.2019.104323 Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range
Adv. Energy Mater. Jin 10 2000797 2020 10.1002/aenm.202000797 Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction
Nano Energy Xia 72 104681 2020 10.1016/j.nanoen.2020.104681 Boosting electrosynthesis of ammonia on surface-engineered MXene Ti3C2
Angew. Chem. Int. Ed. Engl. Ahmed 59 21465 2020 10.1002/anie.202009435 Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction
ACS Catal. Zou 9 10649 2019 10.1021/acscatal.9b02794 Corrosion-induced Cl-doped ultrathin graphdiyne toward electrocatalytic nitrogen reduction at ambient conditions
Angew. Chem. Int. Ed. Engl. Yang 59 4525 2020 10.1002/anie.201915001 The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction
ACS Sustainable Chem. Eng. Yang 8 2957 2020 10.1021/acssuschemeng.9b07526 Metal-tuned W18O49 for efficient electrocatalytic N2 reduction
Angew. Chem. Int. Ed. Engl. Wu 58 18449 2019 10.1002/anie.201911153 Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping
J. Mater. Chem. A Chu 8 5865 2020 10.1039/C9TA14260F Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation
Adv. Energy Mater. Shi 8 1800124 2018 10.1002/aenm.201800124 Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution
J. Mater. Chem. A Yang 5 18967 2017 10.1039/C7TA06139K Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm
Nano Energy Nazemi 49 316 2018 10.1016/j.nanoen.2018.04.039 Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages
Chem Huang 5 15 2019 10.1016/j.chempr.2018.12.015 Tuning active sites of MXene for efficient electrocatalytic N2 fixation
Adv. Mater. Zhang 30 e1800191 2018 10.1002/adma.201800191 Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies
Electrochim. Acta Guo 284 392 2018 10.1016/j.electacta.2018.07.168 Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene
ACS Sustain. Chem. Eng. Li 7 8853 2019 10.1021/acssuschemeng.9b00852 In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation
Appl. Catal. B Yang 264 118477 2020 10.1016/j.apcatb.2019.118477 Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction
Appl. Catal. B Chu 267 118693 2020 10.1016/j.apcatb.2020.118693 Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction
Angew. Chem. Int. Ed. Engl. Tong 59 2649 2020 10.1002/anie.201913122 Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis
Chem Li 6 885 2020 10.1016/j.chempr.2020.01.013 Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions
Angew. Chem. Int. Ed. Engl. Zheng 58 18604 2019 10.1002/anie.201909477 Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation
Joule McPherson 4 12 2020 10.1016/j.joule.2019.12.013 Can electrification of ammonia synthesis decrease its carbon footprint?
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.