$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Drug Evaluation Based on a Multi-Channel Cell Chip with a Horizontal Co-Culture 원문보기

International journal of molecular sciences, v.22 no.13, 2021년, pp.6997 -   

Kim, Gyeong-Ji (Department of Food and Nutrition, KC University, Seoul 07661, Korea) ,  Lee, Kwon-Jai (kgj8495@hanmail.net) ,  Choi, Jeong-Woo (College of H-LAC, Daejeon University, Daejeon 34520, Korea) ,  An, Jeung Hee (kjlee@dju.kr)

Abstract AI-Helper 아이콘AI-Helper

We developed a multi-channel cell chip containing a three-dimensional (3D) scaffold for horizontal co-culture and drug toxicity screening in multi-organ culture (human glioblastoma, cervical cancer, normal liver cells, and normal lung cells). The polydimethylsiloxane (PDMS) multi-channel cell chip (...

Keyword

참고문헌 (44)

  1. 1. Yan Y. Xiong Z. Hu Y. Wang S. Zhang R. Zhang C. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition Mater. Lett. 2003 57 2623 2628 10.1016/S0167-577X(02)01339-3 

  2. 2. He Y. Liu W. Guan L. Chen J. Duan L. Jia Z. Huang J. Li W. Liu J. Xiong J. A 3D-Printed PLCL Scaffold Coated with Collagen Type i and Its Biocompatibility BioMed Res. Int. 2018 2018 10.1155/2018/5147156 29850530 

  3. 3. Li Z. Liu P. Yang T. Sun Y. You Q. Li J. Wang Z. Han B. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering J. Biomater. Appl. 2016 30 1552 1565 10.1177/0885328216638587 27059497 

  4. 4. Loh Q.L. Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size Tissue Eng. Part B Rev. 2013 19 485 502 10.1089/ten.teb.2012.0437 23672709 

  5. 5. Gregor A. Filová E. Novák M. Kronek J. Chlup H. Buzgo M. Blahnová V. Lukášová V. Bartoš M. Nečas A. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer J. Biol. Eng. 2017 11 31 10.1186/s13036-017-0074-3 29046717 

  6. 6. Ma J. Lin L. Zuo Y. Zou Q. Ren X. Li J. Li Y. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis RSC Adv. 2019 9 5338 5346 10.1039/C8RA06652C 

  7. 7. Chia H.N. Wu B.M. Recent advances in 3D printing of biomaterials J. Biol. Eng. 2015 9 4 10.1186/s13036-015-0001-4 25866560 

  8. 8. Rajan S.A.P. Aleman J. Wan M. Pourhabibi Zarandi N. Nzou G. Murphy S. Bishop C.E. Sadri-Ardekani H. Shupe T. Atala A. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform Acta Biomater. 2020 106 124 135 10.1016/j.actbio.2020.02.015 32068138 

  9. 9. Skardal A. Murphy S.V. Devarasetty M. Mead I. Kang H.W. Seol Y.J. Shrike Zhang Y. Shin S.R. Zhao L. Aleman J. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform Sci. Rep. 2017 7 8837 10.1038/s41598-017-08879-x 28821762 

  10. 10. Rahim N.A. Noort D. Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments Lab Chip 2009 9 3185 3192 19865724 

  11. 11. Novak R. Ingram M. Marquez S. Das D. Delahanty A. Herland A. Maoz B.M. Jeanty S.S.F. Somayaji M.R. Burt M. Robotic fluidic coupling and interrogation of multiple vascularized organ chips Nat. Biomed. Eng. 2020 4 407 420 10.1038/s41551-019-0497-x 31988458 

  12. 12. Zheng F. Fu F. Cheng Y. Wang C. Zhao Y. Gu Z. Organ-on-a-chip systems: Microengineering to biomimic living systems Small 2016 12 2253 2282 10.1002/smll.201503208 26901595 

  13. 13. Delon L.C. Nilghaz A. Cheah E. Prestidge C. Thierry B. Unlocking the potential of organ-on-chip models through pumpless and tubeless microfluidics Adv. Healthc. Mater. 2020 9 e1901784 10.1002/adhm.201901784 32342669 

  14. 14. Chen Z. Zilberberg J. Lee W. Pumpless microfluidic device with open top cell culture under oscillatory shear stress Biomed. Microdevices 2020 22 58 10.1007/s10544-020-00515-2 32833129 

  15. 15. Hamid Q. Wang C. Zhao Y. Snyder J. Sun W. A three-dimensional cell-laden microfluidic chip for in vitro drug metabolism detection Biofabrication 2014 6 025008 10.1088/1758-5082/6/2/025008 24694462 

  16. 16. Karageorgiou V. Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis Biomaterials 2005 26 5474 5491 10.1016/j.biomaterials.2005.02.002 15860204 

  17. 17. Goh W.H. Hashimoto M. Fabrication of 3d microfluidic channels and in-channel features using 3d printed, water-soluble sacrificial mold Macromol. Mater. Eng. 2018 303 1700484 10.1002/mame.201700484 

  18. 18. Saggiomo V. Velders A.H. Simple 3d printed scaffold-removal method for the fabrication of intricate microfluidic devices Adv. Sci. 2015 2 1500125 10.1002/advs.201500125 

  19. 19. Lattermann C. Buchs J. Design and operation of microbioreactor systems for screening and process development Bioreactors: Design, Operation and Novel Applications Mandenius C.F. Wiley-VCH Weinheim, Germany 2016 35 978-3-527-33768-2 

  20. 20. Bareither R. Pollard D. A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need Biotechnol. Prog. 2011 27 2 14 10.1002/btpr.522 21312350 

  21. 21. Silk N. Denby S. Kuiper M. Hatton D. Field R. Baganz F. Lye G. Fed-batch operation of an industrial cell culture process in shaken microwells Biotechnol. Lett. 2010 32 73 78 10.1007/s10529-009-0124-0 19760119 

  22. 22. Mohanty S. Larsen L.B. Trifol J. Szabo P. Burri H.V.R. Canali C. Dufva M. Emnéus J. Wolff A. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3d printed moulds Mater. Sci. Eng. C 2015 55 569 578 10.1016/j.msec.2015.06.002 

  23. 23. Fontoura J.C. Viezzer C. dos Santos F.G. Ligabue R.A. Weinlich R. Puga R.D. Antonow D. Severino P. Bonorino C. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance Mater. Sci. Eng. C 2020 107 110264 10.1016/j.msec.2019.110264 

  24. 24. Cubo-Mateo N. Rodríguez-Lorenzo L.M. Design of thermoplastic 3d-printed scaffolds for bone tissue engineering: Influence of parameters of “hidden” importance in the physical properties of scaffolds Polymers 2020 12 1546 10.3390/polym12071546 32668729 

  25. 25. Rosenzweig D.H. Carelli E. Steffen T. Jarzem P. Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposustissue regeneration Int. J. Mol. Sci. 2015 16 15118 15135 10.3390/ijms160715118 26151846 

  26. 26. Lee J. Lim H. Ahn J. Jang D. Lee S. Park K. Kim S. Design of a 3D BMP-2-delivering tannylated PCL scaffold and its anti-oxidant, anti-inflammatory, and osteogenic effects in vitro IJMS 2018 19 3602 10.3390/ijms19113602 30445673 

  27. 27. Kim G.J. Jo H.J. Lee K.J. Choi J.W. An J.H. Oleanolic Acid Induces p53-dependent Apoptosis via the ERK/JNK/AKT Pathway in Cancer Cell Lines in Prostatic Cancer Xenografts in Mice Oncotarget 2018 9 26370 26386 10.18632/oncotarget.25316 29899865 

  28. 28. Guo G. Yao W. Zhang Q. Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway PLoS ONE 2013 8 e72079 10.1371/journal.pone.0072079 23991044 

  29. 29. Wang R. Li Y. Huai X.D. Zheng Q.X. Wang W. Li H.J. Huai Q.Y. Design and preparation of derivatives of oleanolic and glycyrrhetinic acids with cytotoxic properties Drug Des. Dev. Ther. 2018 12 1321 1336 10.2147/DDDT.S166051 

  30. 30. Scherließ R. The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells Int. J. Pharm 2011 411 98 105 10.1016/j.ijpharm.2011.03.053 21453764 

  31. 31. Fotakis G. Timbrell J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride Toxicol. Lett. 2006 160 171 177 10.1016/j.toxlet.2005.07.001 16111842 

  32. 32. An J.H. Lee K.J. Kim D.H. Chae H.N. Lee K.S. Skin fibroblast cells on 3D skin cell chip using nanogold platform structures and three-floor structures Sci. Adv. Mater. 2016 8 2147 2152 10.1166/sam.2016.2851 

  33. 33. Li C.-L. Tian T. Nan K.-J. Zhao N. Guo Y.-H. Cui J. Wang J. Zhang W.-G. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro Oncol. Rep. 2008 20 1465 1471 10.3892/or_00000167 19020729 

  34. 34. Meli L. Jordan E.T. Clark D.S. Linhardt R.J. Dordick J.S. Influence of a three-dimensional, microarray environment on human Cell culture in drug screening systems Biomaterials 2012 33 9087 9096 10.1016/j.biomaterials.2012.08.065 22998815 

  35. 35. Imamura Y. Mukohara T. Shimono Y. Funakoshi Y. Chayahara N. Toyoda M. Kiyota N. Takao S. Kono S. Nakatsura T. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer Oncol. Rep. 2015 33 1837 1843 10.3892/or.2015.3767 25634491 

  36. 36. Chan F.K.-M. Moriwaki K. De Rosa M.J. Detection of necrosis by release of lactate dehydrogenase activity Immune Homeostasis Humana Press Totowa, NJ, USA 2013 Volume 979 65 70 

  37. 37. Burd J.F. Usategui-Gomez M. A colorimetric assay for serum lactate dehydrogenase Clin. Chim. Acta 1973 46 223 227 10.1016/0009-8981(73)90174-5 4725386 

  38. 38. Van Moorst M. Dass C.R. Methods for co-culturing tumour and endothelial cells: Systems and their applications J. Pharm. Pharmacol. 2011 63 1513 1521 10.1111/j.2042-7158.2011.01352.x 22060281 

  39. 39. Szondy Z. Sarang Z. Kiss B. Garabuczi E. Koroskenyi K. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance Front. Immunol. 2017 8 909 10.3389/fimmu.2017.00909 28824635 

  40. 40. Fadok V.A. Voelker D.R. Campbell P.A. Cohen J.J. Bratton D.L. Henson P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages J. Immunol. 1992 148 2207 1545126 

  41. 41. Pläsier B. Lloyd D.R. Paul G.C. Thomas C.R. Al-Rubeai M. Automatic image analysis for quantification of apoptosis in animal cell culture by annexin-V affinity assay J. Immunol. Methods 1999 229 81 95 10.1016/S0022-1759(99)00107-6 10556693 

  42. 42. Chipuk J.E. Green D.R. Do inducers of apoptosis trigger caspase-independent cell death? Nat. Rev. Mol. Cell Biol. 2005 6 268 275 10.1038/nrm1573 15714200 

  43. 43. Kono H. Rock K.L. How dying cells alert the immune system to danger Nat. Rev. Immunol. 2008 8 279 289 10.1038/nri2215 18340345 

  44. 44. Motskin M. Wright D.M. Muller K. Kyle N. Gard T.G. Porter A.E. Skepper J.N. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability Biomaterials 2009 30 3307 3317 10.1016/j.biomaterials.2009.02.044 19304317 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로