$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Satellite-Based Aerosol Classification for Capital Cities in Asia Using a Random Forest Model 원문보기

Remote sensing, v.13 no.13, 2021년, pp.2464 -   

Choi, Wonei (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University, Busan 48513, Korea) ,  Kang, Hyeongwoo (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University, Busan 48513, Korea) ,  Shin, Dongho (Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea) ,  Lee, Hanlim (Division of Earth Environmental System Science, Major of Spatial Information Engineering, Pukyong National University, Busan 48513, Korea)

Abstract AI-Helper 아이콘AI-Helper

Aerosol types in Asian capital cities were classified using a random forest (RF) satellite-based aerosol classification model during 2018-2020 in an investigation of the contributions of aerosol types, with or without Aerosol Robotic Network (AERONET) observations. In this study, we used the recentl...

참고문헌 (67)

  1. Hamill An AERONET-based aerosol classification using the Mahalanobis distance Atmos. Environ. 2016 10.1016/j.atmosenv.2016.06.002 140 213 

  2. 10.1029/2012JD018127 Giles, D.M., Holben, B.N., Eck, T.F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R.R., Thompson, A.M., and Schafer, J.S. (2012). An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos., 117. 

  3. Perrone Particle optical properties at a Central Mediterranean site: Impact of advection routes and local meteorology Atmos. Res. 2014 10.1016/j.atmosres.2014.03.029 145 152 

  4. Schmeisser Classifying aerosol type using in situ surface spectral aerosol optical properties Atmos. Chem. Phys. 2017 10.5194/acp-17-12097-2017 17 12097 

  5. Charlson Climate forcing by anthropogenic aerosols Science 1992 10.1126/science.255.5043.423 255 423 

  6. Christopher Daytime variation of shortwave direct radiative forcing of biomass burning aerosols from GOES-8 imager J. Atmos. Sci. 2002 10.1175/1520-0469(2002)059<0681:DVOSDR>2.0.CO;2 59 681 

  7. Procopio Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate Geophys. Res. Lett. 2004 10.1029/2003GL018646 31 L03108 

  8. Dubovik Shortwave radiative forcing and efficiency of key aerosol types using AERONET data Atmos. Chem. Phys. 2012 10.5194/acp-12-5129-2012 12 5129 

  9. Remer The MODIS aerosol algorithm, products, and validation J. Atmos. Sci. 2005 10.1175/JAS3385.1 62 947 

  10. Levy The Collection 6 MODIS aerosol products over land and ocean Atmos. Meas. Tech. 2013 10.5194/amt-6-2989-2013 6 2989 

  11. Myhre Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations Atmos. Chem. Phys. 2012 10.5194/acp-13-1853-2013 13 1853 

  12. Myriokefalitakis Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112) Geosci. Model Dev. 2020 10.5194/gmd-13-5507-2020 13 5507 

  13. Gobbi Classification of aerosol properties derived from AERONET direct sun data Atmos. Chem. Phys. 2007 10.5194/acp-7-453-2007 7 453 

  14. 10.1029/2004JD004874 Omar, A.H., Won, J.G., Winker, D.M., Yoon, S.C., Dubovik, O., and McCormick, M.P. (2005). Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos., 110. 

  15. Mukai Suspended particulate matter sampling at an urban AERONET site in Japan, part 1: Clustering analysis of aerosols J. Appl. Remote Sens. 2007 10.1117/1.2762202 1 013518 

  16. Alam Classification of aerosols in an urban environment on the basis of optical measurements Aerosol Air Qual. Res. 2016 10.4209/aaqr.2016.06.0219 16 2535 

  17. Lee Characteristics of aerosol types from AERONET sunphotometer measurements Atmos. Environ. 2010 10.1016/j.atmosenv.2010.05.035 44 3110 

  18. Tan AERONET data-based determination of aerosol types Atmos. Poll. Res. 2015 10.5094/APR.2015.077 6 682 

  19. Zheng Analysis of influential factors for the relationship between PM 2.5 and AOD in Beijing Atmos. Chem. Phys. 2017 10.5194/acp-17-13473-2017 17 13473 

  20. Logothetis Aerosol classification in Europe, Middle East, North Africa and Arabian Peninsula based on AERONET version 3 Atmos. Res. 2020 10.1016/j.atmosres.2020.104893 239 104893 

  21. Ali Classification of aerosols over Saudi Arabia from 2004-2016 Atmos. Environ. 2020 10.1016/j.atmosenv.2020.117785 241 117785 

  22. Shin Aerosol-type classification based on AERONET version 3 inversion products Atmos. Meas. Tech. 2019 10.5194/amt-12-3789-2019 12 3789 

  23. Higurashi Detection of aerosol types over the East China Sea near Japan from four-channel satellite data Geophys. Res. Lett. 2002 10.1029/2002GL015357 29 17-1 

  24. 10.1029/2004JD004647 Jeong, M.J., and Li, Z. (2005). Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer. J. Geophys. Res. Atmos., 110. 

  25. 10.1029/2006JD008201 Kim, J., Lee, J., Lee, H.C., Higurashi, A., Takemura, T., and Song, C.H. (2007). Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign. J. Geophys. Res. Atmos., 112. 

  26. Lee Classification of aerosol type from MODIS and OMI over East Asia Asia-Pac. J. Atmos. Sci. 2007 43 343 

  27. Torres Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations Atmos. Meas. Tech. 2013 10.5194/amt-6-3257-2013 6 3257 

  28. Beirle A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances Atmos. Chem. Phys. 2015 10.5194/acp-15-10597-2015 15 10597 

  29. Mao Satellite-based identification of aerosol particle species using a 2D-space aerosol classification model Atmos. Environ. 2019 10.1016/j.atmosenv.2019.117057 219 117057 

  30. 10.3390/rs13040609 Choi, W., Lee, H., and Park, J. (2021). A first approach to aerosol classification using space-borne measurement data: Machine learning-based algorithm and evaluation. Remote Sens., 13. 

  31. 10.3390/rs13071268 Choi, W., Lee, H., Kim, D., and Kim, S. (2021). Improving spatial coverage of satellite aerosol classification using a random forest model. Remote Sens., 13. 

  32. Iwasaka Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles J. Geophys. Res. Atmos. 2003 10.1029/2002JD003267 108 ACE20-1 

  33. 10.1029/2005GL025278 Chinnam, N., Dey, S., Tripathi, S.N., and Sharma, M. (2006). Dust events in Kanpur, northern India: Chemical evidence for source and implications to radiative forcing. Geophys. Res. Lett., 33. 

  34. Jugder Spatial and temporal variations of dust concentrations in the gobi desert of Mongolia Glob. Planet. Chang. 2011 10.1016/j.gloplacha.2011.05.003 78 14 

  35. Jadoon Evaluation of levels, sources and health hazards of road-dust associated toxic metals in Jalalabad and Kabul cities, Afghanistan Arch. Environ. Contam. Toxicol. 2018 10.1007/s00244-017-0475-9 74 32 

  36. Engling Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season Tellus B Chem. Phys. Meteorol. 2011 10.1111/j.1600-0889.2010.00512.x 63 117 

  37. Huang Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA Atmos. Environ. 2013 10.1016/j.atmosenv.2012.03.048 78 291 

  38. Shi Probing the dynamic characteristics of aerosol originated from South Asia biomass burning using POLDER/GRASP satellite data with relevant accessory technique design Environ. Int. 2020 10.1016/j.envint.2020.106097 145 106097 

  39. Salam Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka-Bangladesh) Atmos. Environ. 2003 10.1016/S1352-2310(03)00135-3 37 2517 

  40. Carmichael Asian aerosols: Current and year 2030 distributions and implications to human health and regional climate change Environ. Sci. Technol. 2009 10.1021/es8036803 43 5811 

  41. Dutkiewicz Black carbon aerosols in urban air in South Asia Atmos. Environ. 2009 10.1016/j.atmosenv.2008.12.043 43 1737 

  42. Saikawa Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing Atmos. Environ. 2009 10.1016/j.atmosenv.2009.02.017 43 2814 

  43. 10.1029/2008JD009804 Pandithurai, G., Dipu, S., Dani, K.K., Tiwari, S., Bisht, D.S., Devara, P.C.S., and Pinker, R.T. (2008). Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res. Atmos., 113. 

  44. Kim Asian dust event observed in Seoul, Korea, during 29-31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements Sci. Total Environ. 2010 10.1016/j.scitotenv.2009.12.018 408 1707 

  45. Braun Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines Atmos. Chem. Phys. 2020 10.5194/acp-20-2387-2020 20 2387 

  46. Dejchanchaiwong Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode J. Environ. Sci. 2020 10.1016/j.jes.2020.04.009 97 149 

  47. Breiman Random forests Mach. Learn. 2001 10.1023/A:1010933404324 45 5 

  48. United Nations (2019). World Urbanization Prospects: The 2018 Revision, online ed., United Nations. 

  49. Theys Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis Atmos. Meas. Tech. 2017 10.5194/amt-10-119-2017 10 119 

  50. Lambert, J., Compernolle, S., Eichmann, K., de Graaf, M., Hubert, D., Keppens, A., Kleipool, Q., Langerock, B., Sha, M., and Verhoelst, T. (2020). Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products# 06: April 2018-February 2020, Belgian Institute for Space Aeronomy. 

  51. Van Geffen, J., Eskes, H., Boersma, K., Maasakkers, J., and Veefkind, J. (2019). TROPOMI ATBD of the Total and Tropospheric NO2 Data Products, KNMI. 

  52. Noh Depolarization ratios retrieved by AERONET sun-sky radiometer data and comparison to depolarization ratios measured with lidar Atmos. Chem. Phys. 2017 10.5194/acp-17-6271-2017 17 6271 

  53. Costabile Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption Atmos. Chem. Phys. 2013 10.5194/acp-13-2455-2013 13 2455 

  54. Li Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures J. Geophys. Res. Atmos. 2015 10.1002/2014JD022433 120 2037 

  55. Kaskaoutis Comparison of the Ångström parameters retrieval in different spectral ranges with the use of different techniques Meteorol. Atmos. Phys. 2008 10.1007/s00703-007-0279-y 99 233 

  56. Davy Air particulate matter pollution in Ulaanbaatar, Mongolia: Determination of composition, source contributions and source locations Atmos. Poll. Res. 2011 10.5094/APR.2011.017 2 126 

  57. Ai Socioeconomic impact analysis of yellow-dust storms: An approach and case study for Beijing Econ. Syst. Res. 2008 10.1080/09535310802075364 20 187 

  58. Wang First detailed observations of long-range transported dust over the northern South China Sea Atmos. Environ. 2011 10.1016/j.atmosenv.2011.04.077 45 4804 

  59. Sugimoto Comparison of surface observations and a regional dust transport model assimilated with lidar network data in Asian dust event of March 29 to April 2, 2007 Sola 2011 10.2151/sola.7A-004 7 13 

  60. Chuang Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment Atmos. Environ. 2013 10.1016/j.atmosenv.2012.06.056 78 72 

  61. Yadav Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change-a review Environ. Poll. 2017 10.1016/j.envpol.2017.04.085 227 414 

  62. Middleton A geography of dust storms in South-west Asia J. Climatol. 1986 10.1002/joc.3370060207 6 183 

  63. Wang Identifying a transport mechanism of dust aerosols over South Asia to the Tibetan Plateau: A case study Sci. Total Environ. 2021 10.1016/j.scitotenv.2020.143714 758 143714 

  64. Sanap The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review Atmos. Res. 2015 10.1016/j.atmosres.2015.06.002 164 318 

  65. Jin Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges Earth-Sci. Rev. 2021 10.1016/j.earscirev.2021.103562 215 103562 

  66. Gautam Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season Atmos. Environ. 2013 10.1016/j.atmosenv.2012.05.038 78 51 

  67. Kalita Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning Atmos. Res. 2020 10.1016/j.atmosres.2020.105064 245 105064 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로