$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Increasing Monounsaturated Fatty Acid Contents in Hexaploid Camelina sativa Seed Oil by FAD2 Gene Knockout Using CRISPR-Cas9 원문보기

Frontiers in plant science, v.12, 2021년, pp.702930 -   

Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration , Jeonju-si , South Korea) ,  Jeon, Inhwa (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration , Jeonju-si , South Korea) ,  Yu, Hami (Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration , Jeonju-si , South Korea) ,  Kim, Sang-Gyu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Deajeon , South Korea) ,  Kim, Hyun-Sung (Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea) ,  Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea) ,  Lee, Juho (Department of Agricultural Biotechnology, Nation) ,  Lee, Seon-Kyeong ,  Kim, Hyun Uk

Abstract AI-Helper 아이콘AI-Helper

Seed oils are used as edible oils and increasingly also for industrial applications. Although high-oleic seed oil is preferred for industrial use, most seed oil is high in polyunsaturated fatty acids (PUFAs) and low in monounsaturated fatty acids (MUFAs) such as oleic acid. Oil from Camelina, an eme...

Keyword

참고문헌 (59)

  1. Bansal S. Durrett T. P. ( 2016 ). Camelina sativa : An ideal platform for the metabolic engineering and field production of industrial lipids . Biochimie 120 , 9 – 16 . 10.1016/j.biochi.2015.06.009 26107412 

  2. Berti M. Gesch R. Eynck C. Anderson J. Cermak S. ( 2016 ). Camelina uses, genetics, genomics, production, and management . Ind. Crop Prod. 94 , 690 – 710 . 10.1016/j.indcrop.2016.09.034 

  3. Biermann U. Bornscheuer U. Meier M. R. Metzger J. O. Schafer H. J. ( 2011 ). Oils and fats as renewable raw materials in chemistry . Angew. Chem. Int. Edit 50 , 3854 – 3871 . 10.1002/anie.201002767 21472903 

  4. Braatz J. Harloff H.-J. Mascher M. Stein N. Himmelbach A. Jung C. ( 2017 ). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape ( Brassica napus ) . Plant Physiol. 174 , 935 – 942 . 10.1104/pp.17.00426 28584067 

  5. Brinkman E. K. Chen T. Amendola M. Van steensel B. ( 2014 ). Easy quantitative assessment of genome editing by sequence trace decomposition . Nucleic Acids Res. 42 , e168 – e168 . 10.1093/nar/gku936 25300484 

  6. Browse J. Kunst L. Anderson S. Hugly S. Somervill C. ( 1989 ). A mutant of arabidopsis deficient in the chloroplast 16:1/18:1 desaturase . Plant Physiol . 90 , 522 – 529 . 10.1104/pp.90.2.522 16666802 

  7. Browse J. Somerville C. ( 1991 ). Glycerolipid synthesis: biochemistry and regulation . Ann. Rev. Plant Physiol. Plant Mol. Biol. 42 , 467 – 506 . 10.1146/annurev.pp.42.060191.002343 

  8. Chen Y. Zhou X. R. Zhang Z. J. Dribnenki P. Singh S. Green A. ( 2015 ). Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing . Plant Cell Rep. 34 , 643 – 653 . 10.1007/s00299-015-1737-5 25604988 

  9. Cho S. W. Kim S. Kim Y. Kweon J. Kim H. S. Bae S. . ( 2014 ). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases . Genome Res . 24 , 132 – 141 . 10.1101/gr.162339.113 24253446 

  10. Curtis M. D. Grossniklaus U. ( 2003 ). A gateway cloning vector set for high-throughput functional analysis of genes in planta . Plant Physiol. 133 , 462 – 469 . 10.1104/pp.103.027979 14555774 

  11. Davis J. P. Dean L. O. Faircloth W. H. Sanders T. H. ( 2008 ). Physical and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut . J. Am. Oil Chem. Soc. 85 , 235 – 243 . 10.1007/s11746-007-1190-x 

  12. Do P. T. Nguyen C. X. Bui H. T. Tran L. T. N. Stacey G. Gillman J. D. . ( 2019 ). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean . BMC Plant Biol. 19 : 311 . 10.1186/s12870-019-1906-8 31307375 

  13. Durrett T. P. Benning C. Ohlrogge J. ( 2008 ). Plant triacylglycerols as feedstocks for the production of biofuels . Plant J. 54 , 593 – 607 . 10.1111/j.1365-313X.2008.03442.x 18476866 

  14. Feldmann K. A. Marks M. D. Christianson M. L. Quatrano R. S. ( 1989 ). A dwarf mutant of arabidopsis generated by T-DNA insertion mutagenesis . Science 243 , 1351 – 1354 . 10.1126/science.243.4896.1351 17808268 

  15. Feng Z. Mao Y. Xu N. Zhang B. Wei P. Yang D. L. . ( 2014 ). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis . Proc. Natl. Acad. Sci. U. S. A. 111 , 4632 – 4637 . 10.1073/pnas.1400822111 24550464 

  16. Fu Y. Sander J. Reyon D. Cascio M. V. Joung J. K. ( 2014 ). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs . Nat. Biotechnol . 32 , 279 – 284 . 10.1038/nbt.2808 24463574 

  17. Gibson S. Arondel V. Iba K. Somerville C. ( 1994 ). Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from arabidopsis-thaliana . Plant Physiol. 106 , 1615 – 1621 . 10.1104/pp.106.4.1615 7846164 

  18. Hofgen R. Willmitzer L. ( 1988 ). Storage of competent cells for agrobacterium transformation . Nucleic Acids Res. 16 , 9877 – 9877 . 10.1093/nar/16.20.9877 3186459 

  19. Huang H. Cui T. Zhang L. Yang Q. Yang Y. Xie K. . ( 2020 ). Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus . Theor. Appl. Genet. 133 , 2401 – 2411 . 10.1007/s00122-020-03607-y 32448919 

  20. Hutcheon C. Ditt R. F. Beilstein M. Comai L. Schroeder J. Goldstein E. . ( 2010 ). Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes . BMC Plant Biol. 10 : 233 . 10.1186/1471-2229-10-233 20977772 

  21. Iba K. Gibson S. Nishiuchi T. Fuse T. Nishimura M. Arondel V. . ( 1993 ). A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana . J. Biol. Chem. 268 , 24099 – 24105 . 10.1016/S0021-9258(20)80498-0 8226956 

  22. James D. W. Jr. Dooner H. K. ( 1991 ). Novel seed lipid phenotypes in combinations of mutants altered in fatty acid biosynthesis inArabidopsis . Theor. Appl. Genet. 82 , 409 – 412 . 10.1007/BF00588591 24213254 

  23. Jiang W. Z. Henry I. M. Lynagh P. G. Comai L. Cahoon E. B. Weeks D. P. ( 2017 ). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa , using CRISPR/Cas9 gene editing . Plant Biotechnol. J. 15 , 648 – 657 . 10.1111/pbi.12663 27862889 

  24. Jung J. H. Kim H. Go Y. S. Lee S. B. Hur C. G. Kim H. U. . ( 2011 ). Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents . Plant Cell Rep. 30 , 1881 – 1892 . 10.1007/s00299-011-1095-x 21647637 

  25. Kagale S. Koh C. Nixon J. Bollina V. Clarke W. E. Tuteja R. . ( 2014 ). The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure . Nat. Commun. 5 : 3706 . 10.1038/ncomms4706 24759634 

  26. Kang J. Snapp A. R. Lu C. ( 2011 ). Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oilseed crop Camelina sativa . Plant Physiol. Biochem. 49 , 223 – 229 . 10.1016/j.plaphy.2010.12.004 21215650 

  27. Kim H. Kim S. T. Ryu J. Choi M. K. Kweon J. Kang B. C. . ( 2016 ). A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system . J. Integr. Plant Biol. 58 , 705 – 712 . 10.1111/jipb.12474 26946469 

  28. Kurdrid P. Subudhi S. Hongsthong A. Ruengjitchatchawalya M. Tanticharoen M. ( 2005 ). Functional expression of Spirulina-Δ6 desaturase gene in yeast, Saccharomyces cerevisiae . Mol. Biol. Rep. 32 , 215 – 226 . 10.1007/s11033-005-0416-y 16328883 

  29. Lee K. R. Kim E. H. Roh K. H. Kim J. B. Kang H. C. Go Y. S. . ( 2016 ). High-oleic oilseed rapes developed with seed-specific suppression of FAD2 gene expression . Appl. Biol. Chem. 59 , 669 – 676 . 10.1007/s13765-016-0208-1 

  30. Lee Y.-H. Park W. Kim K.-S. Jang Y.-S. Lee J.-E. Cha Y.-L. . ( 2017 ). EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene ( FAD2-2 ) results in elevated oleic acid content in rapeseed ( Brassica napus L.) . Euphytica 214 , 1 – 12 . 10.1007/s10681-017-2106-y 

  31. Lightner J. James D. W. Dooner H. K. Browse J. ( 1994a ). Altered body morphology is caused by increased stearate levels in a mutant of Arabidosis . Plant J. 6 , 401 – 412 . 10.1046/j.1365-313X.1994.06030401.x 

  32. Lightner J. Wu J. Browse J. ( 1994b ). A mutant of arabidopsis with lncreased levels of stearic acid . Plant Physiol. 106 , 1443 – 1451 . 10.1104/pp.106.4.1443 12232421 

  33. Liu W. Xie X. Ma X. Li J. Chen J. Liu Y. G. ( 2015 ). DSDecode: a web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations . Mol Plant 8 , 1431 – 1433 . 10.1016/j.molp.2015.05.009 26032088 

  34. Liu X. J. Brost J. Hutcheon C. Guilfoil R. Wilson A. K. Leung S. . ( 2012 ). Transformation of the oilseed crop Camelina sativa by Agrobacterium-mediated floral dip and simple large-scale screening of transformants . In Vitro Cell Dev-Pl 48 , 462 – 468 . 10.1007/s11627-012-9459-7 

  35. Lu C. Kang J. ( 2008 ). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation . Plant Cell Rep. 27 , 273 – 278 . 10.1007/s00299-007-0454-0 17899095 

  36. Lv J. Wu S. Wei R. Li Y. Jin J. Mu Y. . ( 2019 ). The length of guide RNA and target DNA heteroduplex effects on CRISPR/Cas9 mediated genome editing efficiency in porcine cells. J. Vet . Sci . 20 : e23 . 10.4142/jvs.2019.20.e23 

  37. Mahfouz M. M. Piatek A. Stewart C. N. Jr. ( 2014 ). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives . Plant Biotechnol. J. 12 , 1006 – 1014 . 10.1111/pbi.12256 25250853 

  38. Malik M. R. Tang J. H. Sharma N. Burkitt C. Ji Y. Y. Mykytyshyn M. . ( 2018 ). Camelina sativa , an oilseed at the nexus between model system and commercial crop . Plant Cell Rep. 37 , 1367 – 1381 . 10.1007/s00299-018-2308-3 29881973 

  39. Mao Y. Zhang Z. Feng Z. Wei P. Zhang H. Botella J. R. . ( 2016 ). Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis . Plant Biotechnol. J. 14 , 519 – 532 . 10.1111/pbi.12468 26360626 

  40. Miquel M. James D. Jr. Dooner H. Browse J. ( 1993 ). Arabidopsis requires polyunsaturated lipids for low-temperature survival . Proc. Natl. Acad. Sci. U.S.A. 90 , 6208 – 6212 . 10.1073/pnas.90.13.6208 11607410 

  41. Moon S. B. Kim D. Y. Ko J. -H. Kim J. -S. Kim Y. -S. ( 2019 ). Improving CRISPR genome editing by engineering guide RNAs . Trends Biotechnol . 37 , 870 – 881 . 10.1016/j.tibtech.2019.01.009 30846198 

  42. Morineau C. Bellec Y. Tellier F. Gissot L. Kelemen Z. Nogue F. . ( 2017 ). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa . Plant Biotechnol. J. 15 , 729 – 739 . 10.1111/pbi.12671 27885771 

  43. Nguyen H. T. Silva J. E. Podicheti R. Macrander J. Yang W. Nazarenus T. J. . ( 2013 ). Camelina seed transcriptome: a tool for meal and oil improvement and translational research . Plant Biotechnol. J. 11 , 759 – 769 . 10.1111/pbi.12068 23551501 

  44. Nguyen T. Shanklin J. ( 2009 ). Altering arabidopsis oilseed composition by a combined antisense-hairpin RNAi gene suppression approach . J. Am. Oil Chem. Soc. 86 , 41 – 49 . 10.1007/s11746-008-1322-y 

  45. Okuley J. Lightner J. Feldmann K. Yadav N. Lark E. Browse J. ( 1994 ). Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis . Plant Cell 6 , 147 – 158 . 10.1105/tpc.6.1.147 7907506 

  46. Okuzaki A. Ogawa T. Koizuka C. Kaneko K. Inaba M. Imamura J. . ( 2018 ). CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus . Plant Physiol. Biochem. 131 , 63 – 69 . 10.1016/j.plaphy.2018.04.025 29753601 

  47. Park J. Bae S. Kim J. S. ( 2015 ). Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites . Bioinformatics 31 , 4014 – 4016 . 10.1093/bioinformatics/btv537 26358729 

  48. Park J. Lim K. Kim J. S. Bae S. ( 2017 ). Cas-analyzer: an online tool for assessing genome editing results using NGS data . Bioinformatics 33 , 286 – 288 . 10.1093/bioinformatics/btw561 27559154 

  49. Ran F. A. Hsu P. D. Wright J. Agarwala V. Scott D. A. Zhang F. ( 2013 ). Genome engineering using the CRISPR-Cas9 system . Nat. Protoc. 8 , 2281 – 2308 . 10.1038/nprot.2013.143 24157548 

  50. Shanklin J. Whittle E. Fox B. G. ( 1994 ). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase . Biochem. 33 , 12787 – 12794 . 10.1021/bi00209a009 7947684 

  51. Sivaraman I. Arumugam N. Sodhi Y. S. Gupta V. Mukhopadhyay A. Pradhan A. K. . ( 2004 ). Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene . Mol. Breed. 13 , 365 – 375 . 10.1023/B:MOLB.0000034092.47934.d6 

  52. Smith S. A. King R. E. Min D. B. ( 2007 ). Oxidative and thermal stabilities of genetically modified high oleic sunflower oil . Food Chem. 102 , 1208 – 1213 . 10.1016/j.foodchem.2006.06.058 

  53. Vollmann J. Eynck C. ( 2015 ). Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering . Biotechnol. J. 10 , 525 – 535 . 10.1002/biot.201400200 25706640 

  54. Wang Y. Cheng X. Shan Q. Zhang Y. Liu J. Gao C. . ( 2014 ). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew . Nat. Biotechnol. 32 , 947 – 951 . 10.1038/nbt.2969 25038773 

  55. Wang Z. P. Xing H. L. Dong L. Zhang H. Y. Han C. Y. Wang X. C. . ( 2015 ). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation . Genome Biol. 16 : ARTN144 10.1186/s13059-015-0715-0 26193878 

  56. Warner K. Knowlton S. ( 1997 ). Frying quality and oxidative stability of high-oleic corn oils . J. Am. Oil Chem. Soc. 74 , 1317 – 1322 . 10.1007/s11746-997-0063-7 

  57. Wood C. C. Okada S. Taylor M. C. Menon A. Mathew A. Cullerne D. . ( 2018 ). Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability . Plant Biotechnol. J. 16 , 1788 – 1796 . 10.1111/pbi.12915 29509999 

  58. Yadav N. S. Wierzbicki A. Aegerter M. Caster C. S. Perez-Grau L. Kinney A. J. . ( 1993 ). Cloning of higher plant omega-3 fatty acid desaturases . Plant Physiol. 103 , 467 – 476 . 10.1104/pp.103.2.467 8029334 

  59. Zhang Z. Mao Y. Ha S. Liu W. Botella J. R. Zhu J. K. ( 2016 ). A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis . Plant Cell Rep. 35 , 1519 – 1533 . 10.1007/s00299-015-1900-z 26661595 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로