$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Changes in Mechanical Properties of Polyhydroxyalkanoate with Double Silanized Cellulose Nanocrystals Using Different Organosiloxanes 원문보기

Nanomaterials, v.11 no.6, 2021년, pp.1542 -   

Jo, Jaemin (Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea) ,  Kim, Hyeyun (jjm1234@kitech.re.kr (J.J.)) ,  Jeong, So-Yeon (syjeong@kitech.re.kr (S.-Y.J.)) ,  Park, Chulhwan (heliocity@kitech.re.kr (H.S.H.)) ,  Hwang, Ha Soo (Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea) ,  Koo, Bonwook (jjm1234@kitech.re.kr (J.J.))

Abstract AI-Helper 아이콘AI-Helper

Polyhydroxyalkanoate (PHA) is a biodegradable plastic with great potential for tackling plastic waste and marine pollution issues, but its commercial applications have been limited due to its poor processability. In this study, surface-modified cellulose nanocrystals were used to improve the mechani...

주제어

참고문헌 (53)

  1. 1. Napper I.E. Thompson R.C. Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air over a 3-Year Period Environ. Sci. Technol. 2019 53 4775 4783 10.1021/acs.est.8b06984 31030509 

  2. 2. Shen M. Song B. Zeng G. Zhang Y. Huang W. Wen X. Tang W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020 263 114469 10.1016/j.envpol.2020.114469 32272422 

  3. 3. North E.J. Halden R.U. Plastics and environmental health: The road ahead Rev. Environ. Health 2013 28 1 8 10.1515/reveh-2012-0030 23337043 

  4. 4. Dauvergne P. Why is the global governance of plastic failing the oceans? Glob. Environ. Chang. 2018 51 22 31 10.1016/j.gloenvcha.2018.05.002 

  5. 5. Shen M. Zhang Y. Zhu Y. Song B. Zeng G. Hu D. Wen X. Ren X. Recent advances in toxicological research of nanoplastics in the environment: A review Environ. Pollut. 2019 252 511 521 10.1016/j.envpol.2019.05.102 31167159 

  6. 6. Guglielmi G. Science American Association for the Advancement of Science (AAAS) Washington, DC, USA 2017 

  7. 7. Convery F. McDonnell S. Ferreira S. The most popular tax in Europe? Lessons from the Irish plastic bags levy Environ. Resour. Econ. 2007 38 1 11 10.1007/s10640-006-9059-2 

  8. 8. Assessment of Measures to Reduce Marine Litter from Single Use Plastics Final report and Annex Publications Office of the European Union Luxembourg 2018 

  9. 9. European Commission Single-Use Plastics Available online: https://ec.europa.eu/environment/topics/plastics/single-use-plastics_en (accessed on 2 April 2021) 

  10. 10. Li Z. Yang J. Loh X.J. Polyhydroxyalkanoates: Opening doors for a sustainable future NPG Asia Mater. 2016 8 1 20 10.1038/am.2016.48 

  11. 11. Kubowicz S. Booth A.M. Biodegradability of Plastics: Challenges and Misconceptions Environ. Sci. Technol. 2017 51 12058 12060 10.1021/acs.est.7b04051 29022342 

  12. 12. Dilkes-Hoffman L.S. Lant P.A. Laycock B. Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study Mar. Pollut. Bull. 2019 142 15 24 10.1016/j.marpolbul.2019.03.020 31232288 

  13. 13. Lugoloobi I. Li X. Zhang Y. Mao Z. Wang B. Sui X. Feng X. Fabrication of lignin/poly(3-hydroxybutyrate) nanocomposites with enhanced properties via a Pickering emulsion approach Int. J. Biol. Macromol. 2020 165 3078 3087 10.1016/j.ijbiomac.2020.10.156 33736293 

  14. 14. Meereboer K.W. Misra M. Mohanty A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites Green Chem. 2020 22 5519 5558 10.1039/D0GC01647K 

  15. 15. Winnacker M. Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications Eur. J. Lipid Sci. Technol. 2019 121 1 9 10.1002/ejlt.201900101 

  16. 16. Kai D. Loh X.J. Polyhydroxyalkanoates: Chemical modifications toward biomedical applications ACS Sustain. Chem. Eng. 2014 2 106 119 10.1021/sc400340p 

  17. 17. Loureiro N.C. Esteves J.L. Viana J.C. Ghosh S. Development of polyhydroxyalkanoates/poly(lactic acid) composites reinforced with cellulosic fibers Compos. Part B Eng. 2014 60 603 611 10.1016/j.compositesb.2014.01.001 

  18. 18. Giubilini A. Siqueira G. Clemens F.J. Sciancalepore C. Messori M. Nystrom G. Bondioli F. 3D Printing Nanocellulose-Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling ACS Sustain. Chem. Eng. 2020 10.1021/acssuschemeng.0c03385 

  19. 19. Mohamed El-Hadi A. Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites Polym. Bull. 2014 71 1449 1470 10.1007/s00289-014-1135-0 

  20. 20. Chen J. Yang R. Ou J. Tang C. Xiang M. Wu D. Tang J. Tam K.C. Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites Carbohydr. Polym. 2020 242 116399 10.1016/j.carbpol.2020.116399 32564863 

  21. 21. Ramezani M.G. Golchinfar B. Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation J. Compos. Sci. 2019 3 57 10.3390/jcs3020057 

  22. 22. Habibi Y. Lucia L.A. Rojas O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications Chem. Rev. 2010 110 3479 3500 10.1021/cr900339w 20201500 

  23. 23. Frank B.P. Durkin D.P. Caudill E.R. Zhu L. White D.H. Curry M.L. Pedersen J.A. Fairbrother D.H. Impact of Silanization on the Structure, Dispersion Properties, and Biodegradability of Nanocellulose as a Nanocomposite Filler ACS Appl. Nano Mater. 2018 1 7025 7038 10.1021/acsanm.8b01819 

  24. 24. Zhang Z. Sebe G. Rentsch D. Zimmermann T. Tingaut P. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water Chem. Mater. 2014 26 2659 2668 10.1021/cm5004164 

  25. 25. Magnani C. Idstrom A. Nordstierna L. Muller A.J. Dubois P. Raquez J.M. Lo Re G. Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate-ran-valerate) Bionanocomposites for Mechanical and Thermal Properties Tuning Biomacromolecules 2020 21 1892 1901 10.1021/acs.biomac.9b01760 32078304 

  26. 26. Bertsch P. Fischer P. Adsorption and interfacial structure of nanocelluloses at fluid interfaces Adv. Colloid Interface Sci. 2020 276 102089 10.1016/j.cis.2019.102089 31887576 

  27. 27. Arrieta M.P. Fortunati E. Dominici F. Rayon E. Lopez J. Kenny J.M. PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties Polym. Degrad. Stab. 2014 107 139 149 10.1016/j.polymdegradstab.2014.05.010 

  28. 28. Baatti A. Erchiqui F. Bebin P. Godard F. Bussieres D. Fabrication of hydrophobic cellulose nanocrystals Can. J. Chem. Eng. 2019 97 2050 2060 10.1002/cjce.23473 

  29. 29. Teramoto Y. Ama S. Higeshiro T. Nishio Y. Cellulose acetate-graft-poly(hydroxyalkanoate)s: Synthesis and dependence of the thermal properties on copolymer composition Macromol. Chem. Phys. 2004 205 1904 1915 10.1002/macp.200400160 

  30. 30. Huang J. Lyu S. Chen Z. Wang S. Fu F. A facile method for fabricating robust cellulose nanocrystal/SiO 2 superhydrophobic coatings J. Colloid Interface Sci. 2019 536 349 362 10.1016/j.jcis.2018.10.045 30380434 

  31. 31. Ma H. Ren H. Koshy P. Sorrell C.C. Hart J.N. Enhancement of CeO 2 Silanization by Spontaneous Breakage of Si-O Bonds through Facet Engineering J. Phys. Chem. C 2020 124 2644 2655 10.1021/acs.jpcc.9b08406 

  32. 32. Kono H. Uno T. Tsujisaki H. Anai H. Kishimoto R. Matsushima T. Tajima K. Nanofibrillated Bacterial Cellulose Surface Modified with Methyltrimethoxysilane for Fiber-Reinforced Composites ACS Appl. Nano Mater. 2020 3 8232 8241 10.1021/acsanm.0c01670 

  33. 33. Wu C.S. Liao H.T. Cai Y.X. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites Polym. Degrad. Stab. 2017 140 55 63 10.1016/j.polymdegradstab.2017.04.016 

  34. 34. Raabe J. De Souza Fonseca A. Bufalino L. Ribeiro C. Martins M.A. Marconcini J.M. Tonoli G.H.D. Evaluation of reaction factors for deposition of silica (SiO 2 ) nanoparticles on cellulose fibers Carbohydr. Polym. 2014 114 424 431 10.1016/j.carbpol.2014.08.042 25263910 

  35. 35. Park H. Yook S. Park S.Y. Youn H.J. Hydrophobization of cellulose nanofibrils by silylation under an aqueous system Palpu Chongi Gisul J. Korea Tech. Assoc. Pulp Pap. Ind. 2018 50 72 77 10.7584/JKTAPPI.2018.06.50.3.72 

  36. 36. Liu D. Wu Q. Andersson R.L. Hedenqvist M.S. Farris S. Olsson R.T. Cellulose nanofibril core-shell silica coatings and their conversion into thermally stable nanotube aerogels J. Mater. Chem. A 2015 3 15745 15754 10.1039/C5TA03646A 

  37. 37. Huang C. Becker M.F. Keto J.W. Kovar D. Annealing of nanostructured silver films produced by supersonic deposition of nanoparticles J. Appl. Phys. 2007 102 10.1063/1.2776163 

  38. 38. Shchipunov Y. Postnova I. Cellulose Mineralization as a Route for Novel Functional Materials Adv. Funct. Mater. 2018 28 1 28 10.1002/adfm.201705042 

  39. 39. Sun Y. Cheng Z. Zhang L. Jiang H. Li C. Promoting the dispersibility of silica and interfacial strength of rubber/silica composites prepared by latex compounding J. Appl. Polym. Sci. 2020 137 10.1002/app.49526 

  40. 40. Li W. Cai G. Zhang P. A simple and rapid Fourier transform infrared method for the determination of the degree of acetyl substitution of cellulose nanocrystals J. Mater. Sci. 2019 54 8047 8056 10.1007/s10853-019-03471-2 

  41. 41. Le D. Kongparakul S. Samart C. Phanthong P. Karnjanakom S. Abudula A. Guan G. Preparing hydrophobic nanocellulose-silica film by a facile one-pot method Carbohydr. Polym. 2016 153 266 274 10.1016/j.carbpol.2016.07.112 27561496 

  42. 42. Yu H. Yan C. Yao J. Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites RSC Adv. 2014 4 59792 59802 10.1039/C4RA12691B 

  43. 43. Ansari F. Salajkova M. Zhou Q. Berglund L.A. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix Biomacromolecules 2015 16 3916 3924 10.1021/acs.biomac.5b01245 26505077 

  44. 44. Thellen C. Coyne M. Froio D. Auerbach M. Wirsen C. Ratto J.A. A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (PHA) films J. Polym. Environ. 2008 16 1 11 10.1007/s10924-008-0079-6 

  45. 45. El-Hadi A. Schnabel R. Straube E. Muller G. Henning S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends Polym. Test. 2002 21 665 674 10.1016/S0142-9418(01)00142-8 

  46. 46. Rap? M. Darie-Nit? R.N. Grosu E. T?nase E.E. Trifoi A.R. Pap T. Vasile C. Effect of plasticizers on melt processability and properties of PHB J. Optoelectron. Adv. Mater. 2015 17 1778 1784 

  47. 47. Parra D.F. Fusaro J. Gaboardi F. Rosa D.S. Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physical-chemical and biodegradation properties of poly (3-hydroxybutyrate) Polym. Degrad. Stab. 2006 91 1954 1959 10.1016/j.polymdegradstab.2006.02.008 

  48. 48. Sun J. Shen J. Chen S. Cooper M.A. Fu H. Wu D. Yang Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends Polymers 2018 10 505 10.3390/polym10050505 30966540 

  49. 49. Abraham E. Deepa B. Pothan L.A. John M. Narine S.S. Thomas S. Anandjiwala R. Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex Cellulose 2013 20 417 427 10.1007/s10570-012-9830-1 

  50. 50. Pachekoski W.M. Agnelli J.A.M. Belem L.P. Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing Mater. Res. 2009 12 159 164 10.1590/S1516-14392009000200008 

  51. 51. Zhang C. Lu L. Li W. Li L. Zhou C. Effects of crystallization temperature and spherulite size on cracking behavior of semi-crystalline polymers Polym. Bull. 2016 73 2961 2972 10.1007/s00289-016-1634-2 

  52. 52. Che X.M. Ye H.M. Chen G.Q. Effects of uracil on crystallization and rheological property of poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate) Compos. Part A Appl. Sci. Manuf. 2018 109 141 150 10.1016/j.compositesa.2018.03.006 

  53. 53. Bugnicourt E. Cinelli P. Lazzeri A. Alvarez V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging Express Polym. Lett. 2014 8 791 808 10.3144/expresspolymlett.2014.82 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로