$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Uniqueness of gait kinematics in a cohort study 원문보기

Scientific reports, v.11 no.1, 2021년, pp.15248 -   

Park, Gunwoo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea) ,  Lee, Kyoung Min (Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea) ,  Koo, Seungbum (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Gait, the style of human walking, has been studied as a behavioral characteristic of an individual. Several studies have utilized gait to identify individuals with the aid of machine learning and computer vision techniques. However, there is a lack of studies on the nature of gait, such as the ident...

참고문헌 (41)

  1. 1. Seckiner D Mallett X Maynard P Meuwly D Roux C Forensic gait analysis—Morphometric assessment from surveillance footage Forensic Sci. Int. 2019 296 57 66 10.1016/j.forsciint.2019.01.007 30690252 

  2. 2. Sabhanayagam T Venkatesan VP Senthamaraikannan K A comprehensive survey on various biometric systems Int. J. Appl. Eng. Res. 2018 13 5 2276 2297 

  3. 3. Dargan S Kumar M A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities Expert Sys. Appl. 2020 143 113114 10.1016/j.eswa.2019.113114 

  4. 4. Jain AK Ross A Prabhakar S An introduction to biometric recognition IEEE Trans. Circuits Syst. Video Technol. 2004 14 1 4 20 10.1109/TCSVT.2003.818349 

  5. 5. Connor P Ross A Biometric recognition by gait: A survey of modalities and features Comput. Vis. Image Underst. 2018 167 1 27 10.1016/j.cviu.2018.01.007 

  6. 6. Han J Bhanu B Individual recognition using gait energy image IEEE Trans. Pattern Anal. Mach. Intel. 2005 28 2 316 322 10.1109/TPAMI.2006.38 

  7. 7. Ben X Gong C Zhang P Yan R Wu Q Meng W Coupled bilinear discriminant projection for cross-view gait recognition IEEE Trans. Circuits Syst. Video Technol. 2019 30 3 734 747 10.1109/TCSVT.2019.2893736 

  8. 8. Lee J Phan CB Koo S Predicting three-dimensional gait parameters with a single camera video sequence Int. J. Precis. Eng. Man. 2018 19 5 753 759 10.1007/s12541-018-0090-3 

  9. 9. Cao Z Hidalgo G Simon T Wei SE Sheikh Y OpenPose: Realtime multi-person 2D pose estimation using part affinity fields IEEE Trans. Pattern Anal. Mach. Intel. 2019 43 1 172 186 10.1109/TPAMI.2019.2929257 

  10. 10. Chen, C. H. & Ramanan, D. 3d human pose estimation= 2d pose estimation+ matching. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 7035–7043 (2017). 

  11. 11. Loper M Mahmood N Romero J Pons-Moll G Black MJ SMPL: A skinned multi-person linear model ACM Trans. Graph. 2015 34 6 1 16 10.1145/2816795.2818013 

  12. 12. Metha D XNect: Real-time multi-person 3D motion capture with a single RGB camera ACM Trans. Graph. (TOG) 2020 39 4 82 91 

  13. 13. Horst F Lapuschkin S Samek W Müller KR Schöllhorn WI Explaining the unique nature of individual gait patterns with deep learning Sci. Rep. 2019 9 1 1 13 10.1038/s41598-019-38748-8 30626917 

  14. 14. Liao R Cao C Garcia EB Yu S Huang Y Zhou J Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations Chinese Conference on Biometric Recognition (CCBR) 2017 Springer 474 483 

  15. 15. Liao R Yu S An W Huang Y A model-based gait recognition method with body pose and human prior knowledge Pattern Recogn. 2020 98 107069 10.1016/j.patcog.2019.107069 

  16. 16. Li, X., Makihara, Y., Xu, C., Yagi, Y., Yu, S. & Ren, M. End-to-end model-based gait recognition. In Proc. Asian Conference on Computer Vision (ACCV) (2020). 

  17. 17. Phillips PJ Martin A Wilson CL Przybocki M An introduction evaluating biometric systems Computer 2000 33 2 56 63 10.1109/2.820040 

  18. 18. Kaye DH Identification, individualization and uniqueness: What’s the difference? Law Probab. Risk 2009 8 2 85 94 10.1093/lpr/mgp018 

  19. 19. Page M Taylor J Blenkin M Uniqueness in the forensic identification sciences—Fact or fiction? Forensic Sci. Int. 2011 206 1–3 12 18 10.1016/j.forsciint.2010.08.004 20832209 

  20. 20. Cole SA Forensics without uniqueness, conclusions without individualization: The new epistemology of forensic identification Law Probab. Risk 2009 8 3 233 255 10.1093/lpr/mgp016 

  21. 21. Noh HW Ahn CG Kong HJ Sim JY Ratiometric impedance sensing of fingers for Robust identity Authentication Sci. Rep. 2019 9 1 1 12 30626917 

  22. 22. Armstrong BC Ruiz-Blondet MV Khalifian N Kurtz KJ Jin Z Laszlo S Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics Neurocomputing 2015 166 59 67 10.1016/j.neucom.2015.04.025 

  23. 23. Benedikt L Cosker D Rosin PL Marshall D Assessing the uniqueness and permanence of facial actions for use in biometric applications IEEE Trans. Syst. Man Cybern. Syst. Hum. 2010 40 3 449 10.1109/TSMCA.2010.2041656 

  24. 24. Su K Human identification using finger vein and ECG signals Neurocomputing 2019 332 111 118 10.1016/j.neucom.2018.12.015 

  25. 25. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T. & Yagi, Y. Geinet: View-invariant gait recognition using a convolutional neural network. In  2016 International Conference on Biometrics (ICB) , 1–8. IEEE (2016). 

  26. 26. Zhang, C., Liu, W., Ma, H. & Fu, H. Siamese neural network based gait recognition for human identification. In  2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) , 2832–2836. IEEE (2016). 

  27. 27. Aurand AM Dufour JS Marras WS Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume J. Biomech. 2017 58 237 240 10.1016/j.jbiomech.2017.05.006 28549599 

  28. 28. van der Kruk E Reijne MM Accuracy of human motion capture systems for sport applications; state-of-the-art review Eur. J. Sport Sci. 2018 18 6 806 819 10.1080/17461391.2018.1463397 29741985 

  29. 29. Surer E Kose A Salah AA Gevers T Methods and technologies for gait analysis Computer Analysis of Human Behavior 2011 Springer 105 123 

  30. 30. Yang W Wang S Hu J Zheng G Valli C Security and accuracy of fingerprint-based biometrics: A review Symmetry 2019 11 2 141 10.3390/sym11020141 

  31. 31. Lucas T Henneberg M Comparing the face to the body, which is better for identification? Int. J. Legal Med. 2016 130 2 533 540 10.1007/s00414-015-1158-6 25666979 

  32. 32. Sayed, M. R., Sim, T., Lim, J. H. & Ma, K. T. Which body is mine? In  2019 IEEE Winter Conference on Applications of Computer Vision (WACV) , 829–838. IEEE (2019). 

  33. 33. Takakusaki K Functional neuroanatomy for posture and gait control J. Mov. Disord. 2017 10 1 1 10.14802/jmd.16062 28122432 

  34. 34. McGinley JL Baker R Wolfe R Morris ME The reliability of three-dimensional kinematic gait measurements: A systematic review Gait Posture 2009 29 3 360 369 10.1016/j.gaitpost.2008.09.003 19013070 

  35. 35. Wang, J., She, M., Nahavandi, S. & Kouzani, A. A review of vision-based gait recognition methods for human identification. In  2010 International Conference on Digital Image Computing: Techniques and Applications , 320–327. IEEE (2010). 

  36. 36. Van Der Maaten L Postma E Van den Herik J Dimensionality reduction: A comparative review J. Mach. Learn. Res. 2009 10 66–71 13 

  37. 37. Romkes J Bracht-Schweizer K The effects of walking speed on upper body kinematics during gait in healthy subjects Gait Posture 2017 54 304 310 10.1016/j.gaitpost.2017.03.025 28395170 

  38. 38. Larsen PK Simonsen EB Lynnerup N Gait analysis in forensic medicine J. Forensic Sci. 2008 53 5 1149 1153 10.1111/j.1556-4029.2008.00807.x 18636978 

  39. 39. Abdi H Williams LJ Principal component analysis Wiley Interdiscip. Rev. Comput. Stat. 2010 2 4 433 459 10.1002/wics.101 

  40. 40. Jun K Lee DW Lee K Lee S Kim MS Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition IEEE Access 2020 8 19196 19207 10.1109/ACCESS.2020.2967845 

  41. 41. Takemura N Makihara Y Muramatsu D Echigo T Yagi Y Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition IPSJ Trans. Comput. Vis. Appl. 2018 10 1 1 14 10.1186/s41074-017-0037-0 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로