$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure

Nature biomedical engineering, v.5 no.7, 2021년, pp.772 - 782  

Kim, Joohee ,  Park, Jihun ,  Park, Young-Geun ,  Cha, Eunkyung ,  Ku, Minjae ,  An, Hyeon Seok ,  Lee, Kyoung-Pil ,  Huh, Man-Il ,  Kim, Junmo ,  Kim, Taek-Soo ,  Kim, Dai Woo ,  Kim, Hong Kyun ,  Park, Jang-Ung

초록이 없습니다.

참고문헌 (52)

  1. Nat. Mater. X Yang 18 510 2019 10.1038/s41563-019-0292-9 Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510-517 (2019). 

  2. Science S Xu 344 70 2014 10.1126/science.1250169 Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70-74 (2014). 

  3. Nat. Nanotechnol. X Dai 11 776 2016 10.1038/nnano.2016.96 Dai, X., Zhou, W., Gao, T., Liu, J. & Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776-782 (2016). 

  4. Nat. Commun. K Zhang 8 2017 10.1038/s41467-017-01926-1 Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017). 

  5. Nat. Commun. T Anwar 9 2018 10.1038/s41467-018-05078-8 Anwar, T. et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat. Commun. 9, 2801 (2018). 

  6. Nature W Gao 529 509 2016 10.1038/nature16521 Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509-514 (2016). 

  7. Science D-H Kim 333 838 2011 10.1126/science.1206157 Kim, D.-H. et al. Epidermal electronics. Science 333, 838-843 (2011). 

  8. Nat. Nanotechnol. L Lipani 13 504 2018 10.1038/s41565-018-0112-4 Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504-511 (2018). 

  9. Sens. Actuators A G-Z Chen 203 112 2013 10.1016/j.sna.2013.08.029 Chen, G.-Z., Chan, I.-S. & Lam, D. C. C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens. Actuators A 203, 112-118 (2013). 

  10. Clin. Exp. Ophthalmol. RJ Casson 40 341 2012 10.1111/j.1442-9071.2012.02773.x Casson, R. J., Chidlow, G., Wood, J. P., Crowston, J. G. & Goldberg, I. Definition of glaucoma: clinical and experimental concepts. Clin. Exp. Ophthalmol. 40, 341-349 (2012). 

  11. Arch. Ophthalmol. CGVD Moraes 129 562 2011 10.1001/archophthalmol.2011.72 Moraes, C. G. V. D. et al. Risk factors for visual field progression in treated glaucoma. Arch. Ophthalmol. 129, 562-568 (2011). 

  12. Invest. Ophthalmol. Vis. Sci. E Renard 51 882 2010 10.1167/iovs.09-3668 Renard, E. et al. Twenty-four hour (nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 882-889 (2010). 

  13. Sci. Adv. M Ku 6 eabb2891 2020 10.1126/sciadv.abb2891 Ku, M. et al. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020). 

  14. Am. J. Ophthalmol. RA Moses 46 865 1958 10.1016/0002-9394(58)90998-X Moses, R. A. The Goldmann applanation tonometer. Am. J. Ophthalmol. 46, 865-869 (1958). 

  15. JAMA Ophthalmol. KW Muir 135 1036 2017 10.1001/jamaophthalmol.2017.3194 Muir, K. W. Home tonometry-can we? should we? JAMA Ophthalmol. 135, 1036 (2017). 

  16. Hom, M. & Bruce, A. Manual of Contact Lens Prescribing and Fitting with CD-ROM 3rd edn (Butterworth-Heinemann, 2006). 

  17. JAMA Ophthalmol. A Flatau 134 375 2016 10.1001/jamaophthalmol.2015.5667 Flatau, A. et al. Measured changes in limbal strain during simulated sleep in face down position using an instrumented contact lens in healthy adults and adults with glaucoma. JAMA Ophthalmol. 134, 375-382 (2016). 

  18. Acta Ophthalmol. M Leonardi 87 433 2009 10.1111/j.1755-3768.2008.01404.x Leonardi, M., Pitchon, E. M., Bertsch, A., Renaud, P. & Mermoud, A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87, 433-437 (2009). 

  19. IEEE J. Solid State Circuits YT Liao 47 335 2012 10.1109/JSSC.2011.2170633 Liao, Y. T., Yao, H., Lingley, A., Parviz, B. & Otis, B. P. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J. Solid State Circuits 47, 335-344 (2012). 

  20. J. Biomater. Nanobiotechnol D Piso 3 301 2012 10.4236/jbnb.2012.322037 Piso, D., Veiga-Crespo, P. & Vecino, E. Modern monitoring intraocular pressure sensing devices based on application specific integrated circuits. J. Biomater. Nanobiotechnol 3, 301-309 (2012). 

  21. IEEE Trans. Biomed. Circuits Syst. J Pandey 4 454 2010 10.1109/TBCAS.2010.2081989 Pandey, J. et al. A fully integrated RF-powered contact lens with a single element display. IEEE Trans. Biomed. Circuits Syst. 4, 454-461 (2010). 

  22. Nat. Commun. J Kim 8 2017 10.1038/ncomms14997 Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). 

  23. Clin. Ophthalmol. GE Dunbar 11 875 2017 10.2147/OPTH.S109708 Dunbar, G. E., Shen, B. Y. & Aref, A. A. The sensimed triggerfish contact lens sensor: efficiency, safety, and patient perspectives. Clin. Ophthalmol. 11, 875-882 (2017). 

  24. Sci. Adv. J Park 4 eaap9841 2018 10.1126/sciadv.aap9841 Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018). 

  25. Appl. Phys. Lett. A Romeo 102 131904 2013 10.1063/1.4799653 Romeo, A., Liu, Q., Suo, Z. & Lacour, S. P. Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl. Phys. Lett. 102, 131904 (2013). 

  26. J. Appl. Phys. A Robinson 115 143511 2014 10.1063/1.4871279 Robinson, A., Aziz, A., Liu, Q., Suo, Z. & Lacour, S. P. Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014). 

  27. Acta Ophthalmol. Scand. JØ Hjortdal 73 5 1995 10.1111/j.1600-0420.1995.tb00004.x Hjortdal, J. Ø. & Jensen, P. K. In vitro measurement of corneal strain, thickness, and curvature using digital image processing. Acta Ophthalmol. Scand. 73, 5-11 (1995). 

  28. Invest. Ophthalmol. Vis. Sci. M Leonardi 45 3113 2004 10.1167/iovs.04-0015 Leonardi, M., Leuenberger, P., Bertrand, D., Bertsch, A. & Renaud, P. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. Invest. Ophthalmol. Vis. Sci. 45, 3113-3117 (2004). 

  29. Ophthalmic Physiol. Opt. WA Douthwaite 17 18 1997 10.1046/j.1475-1313.1997.96000336.x Douthwaite, W. A. & Lam, A. K. C. The effect of an artificially elevated intraocular pressure on the central corneal curvature. Ophthalmic Physiol. Opt. 17, 18-24 (1997). 

  30. Sensors S Tadakaluru 14 868 2014 10.3390/s140100868 Tadakaluru, S., Thongwusan, W. & Singjai, P. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14, 868-876 (2014). 

  31. Nat. Nanotechnol. T Yamada 6 296 2011 10.1038/nnano.2011.36 Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296-301 (2011). 

  32. ACS Nano M Amjadi 8 5154 2014 10.1021/nn501204t Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. & Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154-5163 (2014). 

  33. Adv. Electron. Mater. S Gong 1 1400063 2015 10.1002/aelm.201400063 Gong, S. et al. Highly stretchy black gold e-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1, 1400063 (2015). 

  34. Sensors S Yang 13 8577 2013 10.3390/s130708577 Yang, S. & Lu, N. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 13, 8577-8594 (2013). 

  35. Proc. Natl Acad. Sci. USA D-H Kim 109 19910 2012 10.1073/pnas.1205923109 Kim, D.-H. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl Acad. Sci. USA 109, 19910-19915 (2012). 

  36. BMC Ophthalmol. EM Hoffmann 4 2004 10.1186/1471-2415-4-4 Hoffmann, E. M., Grus, F.-H. & Pfeiffer, N. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry. BMC Ophthalmol. 4, 4 (2004). 

  37. Microsyst. Nanoeng. JO Lee 3 17057 2017 10.1038/micronano.2017.57 Lee, J. O. et al. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 3, 17057 (2017). 

  38. IEEE Sens. J. KH Kim 17 7394 2018 10.1109/JSEN.2017.2760140 Kim, K. H., Lee, J. O., Du, J., Sretavan, D. & Choo, H. Real-time in vivo intraocular pressure monitoring using an optomechanical implant and an artificial neural network. IEEE Sens. J. 17, 7394-7404 (2018). 

  39. Small J Kim 11 906 2015 10.1002/smll.201402495 Kim, J. et al. Epidermal electronics with advanced capabilities in near-field communication. Small 11, 906-912 (2015). 

  40. Adv. Funct. Mater. J Kim 25 4761 2015 10.1002/adfm.201501590 Kim, J. et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25, 4761-4767 (2015). 

  41. Adv. Mater. H Tao 24 1067 2012 10.1002/adma.201103814 Tao, H. et al. Silk‐based conformal, adhesive, edible food sensors. Adv. Mater. 24, 1067-1072 (2012). 

  42. Adv. Funct. Mater. S Cheng 21 2282 2011 10.1002/adfm.201002508 Cheng, S. & Wu, Z. Microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv. Funct. Mater. 21, 2282-2290 (2011). 

  43. Adv. Mater. J Kim 27 3292 2015 10.1002/adma.201500710 Kim, J. et al. Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27, 3292-3297 (2015). 

  44. 10.1109/ICECS.2010.5724738 Mujal, J. et al. Inkjet printed antennas for NFC systems. In Proc. 17th IEEE International Conference on Electronics, Circuits and Systems 1220-1223 (IEEE, 2010). 

  45. IEEE Trans. Power Electron. S Li 99 3325 2017 Li, S., Sun, F., An, D. & He, S. Increasing efficiency of a wireless energy transfer system by spatial translational transformation. IEEE Trans. Power Electron. 99, 3325-3332 (2017). 

  46. Adv. Mater. C Ladd 25 5081 2013 10.1002/adma.201301400 Ladd, C., So, J.-H., Muth, J. & Dickey, M. D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081-5085 (2013). 

  47. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991), 1-238 (IEEE, 2006). 

  48. Standard Guide for Accelerated Aging of Sterile Barrier Systems for Medical Devices ASTM F1980‐07 (American Society for Testing Materials, 2011). 

  49. Ophthalmic Physiol. Opt. N Efron 18 182 1998 10.1016/S0275-5408(97)00066-5 Efron, N. Grading scales for contact lens complications. Ophthalmic Physiol. Opt. 18, 182-186 (1998). 

  50. Eye PG First 26 278 2012 10.1038/eye.2011.271 First, P. G. et al. The influence of soft contact lenses on the intraocular pressure measurement. Eye 26, 278-282 (2012). 

  51. Ophthalmology T Realini 117 1700 2010 10.1016/j.ophtha.2010.01.044 Realini, T., Weinreb, R. N. & Wisniewski, S. R. Diurnal intraocular pressure patterns are not repeatable in the short-term in healthy individuals. Ophthalmology 117, 1700-1704 (2010). 

  52. 10.6084/m9.figshare.13289342 Kim, J. et al. Dataset for ‘A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure’. Figshare https://doi.org/10.6084/m9.figshare.13289342 (2020). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로