최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.12 no.1, 2021년, pp.4353 -
Choi, Changhyeok (Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Gu, Geun Ho (Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Noh, Juhwan (Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Park, Hyun S. (Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea) , Jung, Yousung (Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea)
A key challenge to realizing practical electrochemical N2 reduction reaction (NRR) is the decrease in the NRR activity before reaching the mass-transfer limit as overpotential increases. While the hydrogen evolution reaction (HER) has been suggested to be responsible for this phenomenon, the mechani...
1. US Geological Survey. Mineral Commodity Summaries 2020 . 204 (US Geological Survey, 2020).
2. Saadatjou N Jafari A Sahebdelfar S Ruthenium nanocatalysts for ammonia synthesis: a review Chem. Eng. Commun. 2015 202 420 448 10.1080/00986445.2014.923995
3. Philibert, C. Renewable Energy for Industry (International Energy Agency, 2017).
4. Van der Ham CJ Koper MT Hetterscheid DG Challenges in reduction of dinitrogen by proton and electron transfer Chem. Soc. Rev. 2014 43 5183 5191 10.1039/C4CS00085D 24802308
5. Greenlee LF Renner JN Foster SL The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen ACS Catal. 2018 8 7820 7827 10.1021/acscatal.8b02120
6. Montoya JH Tsai C Vojvodic A Nørskov JK The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations ChemSusChem 2015 8 2180 2186 10.1002/cssc.201500322 26097211
7. Hu L Xing Z Feng X Understanding the electrocatalytic interface for ambient ammonia synthesis ACS Energy Lett. 2020 5 430 436 10.1021/acsenergylett.9b02679
8. Wang D Energyefficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions ChemSusChem 2018 11 3416 3422 10.1002/cssc.201801632 30091299
9. Yang D Chen T Wang Z Electrochemical reduction of aqueous nitrogen (N 2 ) at a low overpotential on (110)-oriented Mo nanofilm J. Mater. Chem. A 2017 5 18967 18971 10.1039/C7TA06139K
10. Hu L Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst ACS Catal. 2018 8 9312 9319 10.1021/acscatal.8b02585
11. Liu H-M Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction J. Mater. Chem. A 2018 6 3211 3217 10.1039/C7TA10866D
12. Chen Y Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites ACS Nano 2020 14 6938 6946 10.1021/acsnano.0c01340 32510924
13. Zhang R Jiao L Yang W Wan G Jiang H-L Single-atom catalysts templated by metal?organic frameworks for electrochemical nitrogen reduction J. Mater. Chem. A 2019 7 26371 26377 10.1039/C9TA10206J
14. Wang M Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential Nat. Commun. 2019 10 1 8 10.1038/s41467-018-07882-8 30602773
15. Tao H Nitrogen fixation by Ru single-atom electrocatalytic reduction Chem 2019 5 204 214 10.1016/j.chempr.2018.10.007
16. Wang Y Rational design of Fe?N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution ACS Catal. 2018 9 336 344 10.1021/acscatal.8b03802
17. Geng Z Achieving a recordhigh yield rate of 120.9 μ g NH3 mg -1cat. h -1 for N 2 electrochemical reduction over Ru singleatom catalysts Adv. Mater. 2018 30 1803498 10.1002/adma.201803498
18. Sun Z Oxygen vacancy enables electrochemical N 2 fixation over WO 3 with tailored structure Nano Energy 2019 62 869 875 10.1016/j.nanoen.2019.06.019
19. Han Z Activated TiO 2 with tuned vacancy for efficient electrochemical nitrogen reduction Appl. Catal. B 2019 257 117896 10.1016/j.apcatb.2019.117896
20. Zhang M Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range Nano Energy 2020 68 104323 10.1016/j.nanoen.2019.104323
21. Yu X Boron-doped graphene for electrocatalytic N 2 reduction Joule 2018 2 1610 1622 10.1016/j.joule.2018.06.007
22. Fan Q High-yield production of few-layer boron nanosheets for efficient electrocatalytic N 2 reduction Chem. Commun. 2019 55 4246 4249 10.1039/C9CC00985J
23. Lu F Nitrogen-coordinated single Fe sites for efficient electrocatalytic N 2 fixation in neutral media Nano Energy 2019 61 420 427 10.1016/j.nanoen.2019.04.092
24. Ju W Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2 Nat. Commun. 2017 8 1 9 10.1038/s41467-016-0009-6 28232747
25. Nørskov JK Origin of the overpotential for oxygen reduction at a fuel-cell cathode J. Phys. Chem. B 2004 108 17886 17892 10.1021/jp047349j
26. Singh AR Electrochemical ammonia synthesis-the selectivity challenge ACS Catal. 2017 7 706 709 10.1021/acscatal.6b03035
27. Choi J Identification and elimination of false positives in electrochemical nitrogen reduction studies Nat. Commun. 2020 11 1 10 31911652
28. Tayyebi E Abghoui Y Skulason E Elucidating the mechanism of electrochemical N 2 reduction at the Ru(0001) electrode ACS Catal. 2019 9 11137 11145 10.1021/acscatal.9b03903
29. Back S Jung Y On the mechanism of electrochemical ammonia synthesis on the Ru catalyst Phys. Chem. Chem. Phys. 2016 18 9161 9166 10.1039/C5CP07363D 26974401
30. Maheshwari S Rostamikia G Janik MJ Elementary kinetics of nitrogen electroreduction on Fe surfaces J. Chem. Phys. 2019 150 041708 10.1063/1.5048036 30709282
31. Abghoui Y Garden AL Howalt JG Vegge T Skulason E Electroreduction of N 2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments ACS Catal. 2016 6 635 646 10.1021/acscatal.5b01918
32. Howalt JG Vegge T Electrochemical ammonia production on molybdenum nitride nanoclusters Phys. Chem. Chem. Phys. 2013 15 20957 20965 10.1039/c3cp53160k 24213187
33. Howalt JG Bligaard T Rossmeisl J Vegge T DFT based study of transition metal nano-clusters for electrochemical NH 3 production Phys. Chem. Chem. Phys. 2013 15 7785 7795 10.1039/c3cp44641g 23598667
34. Rostamikia G Maheshwari S Janik MJ Elementary kinetics of nitrogen electroreduction to ammonia on late transition metals Catal. Sci. Technol. 2019 9 174 181 10.1039/C8CY01845F
35. Mathew K Kolluru VC Mula S Steinmann SN Hennig RG Implicit self-consistent electrolyte model in plane-wave density-functional theory J. Chem. Phys. 2019 151 234101 10.1063/1.5132354 31864239
36. Mathew K Sundararaman R Letchworth-Weaver K Arias T Hennig RG Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways J. Chem. Phys. 2014 140 084106 10.1063/1.4865107 24588147
37. Liu L Liu Y Liu C Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt (111) through ab initio simulation of electrode/electrolyte kinetics J. Am. Chem. Soc. 2020 142 4985 4989 10.1021/jacs.9b13694 32129064
38. Gauthier JA Chen LD Bajdich M Chan K Implications of the fractional charge of hydroxide at the electrochemical interface Phys. Chem. Chem. Phys. 2020 22 6964 6969 10.1039/C9CP05952K 32186292
39. Vijay S Dipole-field interactions determine the CO 2 reduction activity of 2D Fe-NC single atom catalysts ACS Catal. 2020 10 7826 7835 10.1021/acscatal.0c01375
40. Van den Bossche M Skulason E Rose-Petruck C Jonsson H Assessment of constant-potential implicit solvation calculations of electrochemical energy barriers for H 2 evolution on Pt J. Phys. Chem. C 2019 123 4116 4124 10.1021/acs.jpcc.8b10046
41. Xiao H Cheng T Goddard WA III Atomistic mechanisms underlying selectivities in C 1 and C 2 products from electrochemical reduction of CO on Cu(111) J. Am. Chem. Soc. 2017 139 130 136 10.1021/jacs.6b06846 28001061
42. Goodpaster JD Bell AT Head-Gordon M Identification of possible pathways for C?C bond formation during electrochemical reduction of CO 2 : new theoretical insights from an improved electrochemical model J. Phys. Chem. Lett. 2016 7 1471 1477 10.1021/acs.jpclett.6b00358 27045040
43. Ji Y Li Y Dong H Ding L Li Y Ruthenium single-atom catalysis for electrocatalytic nitrogen reduction unveiled by grand canonical density functional theory J. Mater. Chem. A 2020 8 20402 20407 10.1039/D0TA06672A
44. Gao G Wang L-W Substantial potential effects on single-atom catalysts for the oxygen evolution reaction simulated via a fixed-potential method J. Catal. 2020 391 530 538 10.1016/j.jcat.2020.08.032
45. Chen M-F Chao T-H Shen M-H Lu Q Cheng M-J Evaluating potential catalytic active sites on nitrogen-doped graphene for the oxygen reduction reaction: an approach based on constant electrode potential density functional theory calculations J. Phys. Chem. C. 2020 124 25675 25685 10.1021/acs.jpcc.0c06704
46. Gauthier JA Challenges in modeling electrochemical reaction energetics with polarizable continuum models ACS Catal. 2018 9 920 931 10.1021/acscatal.8b02793
47. Garza AJ Bell AT Head-Gordon M Mechanism of CO 2 reduction at copper surfaces: pathways to C 2 products ACS Catal. 2018 8 1490 1499 10.1021/acscatal.7b03477
48. Nie S Feibelman PJ Bartelt N Thurmer K Pentagons and heptagons in the first water layer on Pt (111) Phys. Rev. Lett. 2010 105 026102 10.1103/PhysRevLett.105.026102 20867718
49. Ren J Meng S Atomic structure and bonding of water overlayer on Cu (110): The borderline for intact and dissociative adsorption J. Am. Chem. Soc. 2006 128 9282 9283 10.1021/ja061947p 16848434
50. Ogasawara H Structure and bonding of water on Pt (111) Phys. Rev. Lett. 2002 89 276102 10.1103/PhysRevLett.89.276102 12513221
51. Kozuch S Shaik S How to conceptualize catalytic cycles? The energetic span model Acc. Chem. Res. 2011 44 101 110 10.1021/ar1000956 21067215
52. Himmel HJ Reiher M Intrinsic dinitrogen activation at bare metal atoms Angew. Chem. Int. Ed. 2006 45 6264 6288 10.1002/anie.200502892
53. Lee K Design of a metal?organic framework with enhanced back bonding for separation of N 2 and CH 4 J. Am. Chem. Soc. 2014 136 698 704 10.1021/ja4102979 24313689
54. Wang Y Chen X-M Zhang L-L Liu C-G Jahn?Teller distorted effects to promote nitrogen reduction over Keggin-type phosphotungstic acid catalysts: insight from density functional theory calculations Inorg. Chem. 2019 58 7852 7862 10.1021/acs.inorgchem.9b00537 31141350
55. Tang W Sanville E Henkelman G A grid-based Bader analysis algorithm without lattice bias J. Phys. Condens. Matter 2009 21 084204 10.1088/0953-8984/21/8/084204 21817356
56. Hammond GS A correlation of reaction rates J. Am. Chem. Soc. 1955 77 334 338 10.1021/ja01607a027
57. Chan K Nørskov JK Electrochemical barriers made simple J. Phys. Chem. Lett. 2015 6 2663 2668 10.1021/acs.jpclett.5b01043 26266844
58. Liu X pH effects on the electrochemical reduction of CO (2) towards C 2 products on stepped copper Nat. Commun. 2019 10 1 10 10.1038/s41467-018-07882-8 30602773
59. Lamoureux PS Singh AR Chan K pH effects on hydrogen evolution and oxidation over Pt (111): insights from first-principles ACS Catal. 2019 9 6194 6201 10.1021/acscatal.9b00268
60. Xiao H Cheng T Goddard WA III Sundararaman R Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111) J. Am. Chem. Soc. 2016 138 483 486 10.1021/jacs.5b11390 26716884
61. Garcia-Rates M Lopez N Multigrid-based methodology for implicit solvation models in periodic DFT J. Chem. Theory Comput. 2016 12 1331 1341 10.1021/acs.jctc.5b00949 26771105
62. Luo W Nie X Janik MJ Asthagiri A Facet dependence of CO 2 reduction paths on Cu electrodes ACS Catal. 2016 6 219 229 10.1021/acscatal.5b01967
63. Hoskuldsson ArB Abghoui Y Gunnarsdottir AB Skulason E Computational screening of rutile oxides for electrochemical ammonia formation ACS Sustain. Chem. Eng. 2017 5 10327 10333 10.1021/acssuschemeng.7b02379
64. Barahona E Jimenez-Vicente E Rubio LM Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening Sci. Rep. 2016 6 1 10 10.1038/srep38291 28442746
65. Benedek Z Papp M Olah J Szilvasi T Exploring hydrogen evolution accompanying nitrogen reduction on biomimetic nitrogenase analogs: can Fe?N x H y intermediates be active under turnover conditions? Inorg. Chem. 2019 58 7969 7977 10.1021/acs.inorgchem.9b00719 31125218
66. Matson BD Peters JC Fe-mediated HER vs N 2 RR: exploring factors that contribute to selectivity in P 3 E Fe (N 2 ) (E = B, Si, C) catalyst model systems ACS Catal. 2018 8 1448 1455 10.1021/acscatal.7b03068 30555733
67. Yandulov DV Schrock RR Catalytic reduction of dinitrogen to ammonia at a single molybdenum center Science 2003 301 76 78 10.1126/science.1085326 12843387
68. Hoffman BM Lukoyanov D Yang Z-Y Dean DR Seefeldt LC Mechanism of nitrogen fixation by nitrogenase: the next stage Chem. Rev. 2014 114 4041 4062 10.1021/cr400641x 24467365
69. Lee HK Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach Sci. Adv. 2018 4 eaar3208 10.1126/sciadv.aar3208 29536047
70. Suryanto BH Rational electrode?electrolyte design for efficient ammonia electrosynthesis under ambient conditions ACS Energy Lett. 2018 3 1219 1224 10.1021/acsenergylett.8b00487
71. Zhou F Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids Energy Environ. Sci. 2017 10 2516 2520 10.1039/C7EE02716H
72. Lazouski N Chung M Williams K Gala ML Manthiram K Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen Nat. Catal. 2020 3 463 469 10.1038/s41929-020-0455-8
73. Zhang L A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis Phys. Chem. Chem. Phys. 2018 20 4982 4989 10.1039/C7CP05484J 29387843
74. Fan Q Electrochemical CO 2 reduction to C 2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies Mater. Today Energy 2018 10 280 301 10.1016/j.mtener.2018.10.003
75. Jung E Atomic-level tuning of Co?N?C catalyst for high-performance electrochemical H 2 O 2 production Nat. Mater. 2020 19 436 442 10.1038/s41563-019-0571-5 31932671
76. Kresse G Joubert D From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758
77. Kresse G Furthmuller J Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 6 15 50 10.1016/0927-0256(96)00008-0
78. Blochl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 17979 10.1103/PhysRevB.50.17953
79. Hammer B Hansen LB Nørskov JK Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals Phys. Rev. B 1999 59 7413 7421 10.1103/PhysRevB.59.7413
80. Perdew JP Burke K Ernzerhof M Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 3868 10.1103/PhysRevLett.77.3865 10062328
81. Henkelman G Uberuaga BP Jonsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672
82. Henkelman G Jonsson H Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points J. Chem. Phys. 2000 113 9978 9985 10.1063/1.1323224
83. Heyden A Bell AT Keil FJ Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method J. Chem. Phys. 2005 123 224101 10.1063/1.2104507 16375464
84. Henkelman G Jonsson H A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives J. Chem. Phys. 1999 111 7010 7022 10.1063/1.480097
85. Jinnouchi R Anderson AB Aqueous and surface redox potentials from self-consistently determined Gibbs energies J. Phys. Chem. C 2008 112 8747 8750 10.1021/jp802627s
86. Trasatti S The absolute electrode potential: an explanatory note (recommendations 1986) Pure Appl. Chem. 1986 58 955 966 10.1351/pac198658070955
87. Monkhorst HJ Pack JD Special points for Brillouin-zone integrations Phys. Rev. B 1976 13 5188 10.1103/PhysRevB.13.5188
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.