$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Evaluation of Chloride-Ion Diffusion Characteristics of Wave Power Marine Concrete Structures 원문보기

Materials, v.14 no.19, 2021년, pp.5675 -   

Lim, Changhyuck (Marine Renewable Energy Research Division, Korea Research Institute of Ships and Ocean Engineering, 32, Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon 34103, Korea) ,  Kim, Gyuyong (ckdgur1092@kriso.re.kr (C.L.)) ,  Kim, Gyeongtae (kyd000@kriso.re.kr (Y.K.)) ,  Lee, Bokyeong (shinsh@kriso.re.kr (S.S.)) ,  Kim, Youngduck (Department of Architectural Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) ,  Shin, Seungho (j.nam@cnu.ac.kr) ,  Nam, Jeongsoo (Technical Support Team, Halla Cement, 70, Iseopdaecheon-ro 561beon-gil, Hobeop-myeon, Icheon-si 16078, Korea)

Abstract AI-Helper 아이콘AI-Helper

Wave power marine concrete structures generate electrical energy using waves. They are exposed to a multi-deterioration environment because of air and hydrostatic pressure and chloride attack. In this study, the effect of air pressure repeatedly generated by water level change of wave power marine c...

주제어

참고문헌 (42)

  1. 1. Falcao A.F. Henriques J.C. Oscillating-water-column wave energy converters and air turbines: A review Renew. Energy 2016 85 1391 1424 10.1016/j.renene.2015.07.086 

  2. 2. Lindroth S. Leijon M. Onshore wave power measurements—A review Renew. Sustain. Energy Rev. 2016 15 4274 4285 10.1016/j.rser.2011.07.123 

  3. 3. Cruz J. Ocean Wave Energy—Current Status and Future Perspectives Springer Berlin, Germany 2008 434 

  4. 4. Gunn K. Stock-Williams C. Quantifying the global wave power resource Renew. Energy 2012 44 296 304 10.1016/j.renene.2012.01.101 

  5. 5. Arena F. Laface V. Malara G. Romolo A. Viviano A. Fiamma V. Sannino G. Carillo A. Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea Renew. Energy 2015 77 125 141 10.1016/j.renene.2014.12.002 

  6. 6. Liu Z. Hyun B.S. Jin J. Hong K. Practical evaluation method on the performance of pilot OWC system in Korea Proceedings of the International Offshore and Polar Engineering Conference Maui, HI, USA 19–24 June 2011 644 649 

  7. 7. Conciatori D. Sadouki H. Brühwiler E. Capillary suction and diffusion model for chloride ingress into concrete Cem. Concr. Res. 2008 38 1401 1408 10.1016/j.cemconres.2008.06.006 

  8. 8. Ann K. Ahn J. Ryou J. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures Constr. Build. Mater. 2009 23 239 245 10.1016/j.conbuildmat.2007.12.014 

  9. 9. Liu H. Jiang L. Influence of hydrostatic pressure and cationic type on the diffusion behavior of chloride in concrete Materials 2021 14 2851 10.3390/ma14112851 34073432 

  10. 10. Ayaz A. Furqzn F. Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material Materials 2021 14 2297 33946688 

  11. 11. Jun W. Bei H. Study on adsorption properties of calcined mg–Al hydrotalcite for sulfate ion and chloride ion in cement paste Materials 2021 14 994 33672516 

  12. 12. Jun L. Yulong Z. Chloride distribution and steel corrosion in a concrete bridge after long-term exposure to natural marine environment Materials 2021 13 3900 

  13. 13. Choe G. Shinohara Y. Kim G. Nam J. Numerical investigation on lateral confinement effects on concrete cracking induced by rebar corrosion Materials 2020 13 1156 10.3390/ma13051156 32150941 

  14. 14. Muthulingam S. Rao B. Non-uniform time-to-corrosion initiation in steel reinforced concrete under chloride environment Corros. Sci. 2014 82 304 315 10.1016/j.corsci.2014.01.023 

  15. 15. Bentz D. Garboczi E.J. Lu Y. Martys N. Sakulich A. Weiss W.J. Modeling of the influence of transverse cracking on chloride penetration into concrete Cem. Concr. Compos. 2013 38 65 74 10.1016/j.cemconcomp.2013.03.003 

  16. 16. Ormellese M. Berra M. Bolzoni F. Pastore T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures Cem. Concr. Res. 2006 36 536 547 10.1016/j.cemconres.2005.11.007 

  17. 17. Šavija B. Lukovi M. Pacheco J. Schlangen E. Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study Constr. Build. Mater. 2013 44 626 638 10.1016/j.conbuildmat.2013.03.063 

  18. 18. Torres-Acosta A.A. Martnez-Madrid M. Residual life of corroding reinforced concrete structures in marine environment J. Mater. Civ. Eng. 2003 15 344 353 10.1061/(ASCE)0899-1561(2003)15:4(344) 

  19. 19. Zhao Y. Yu J. Jin W. Damage analysis and cracking model of reinforced concrete structures with rebar corrosion Corros. Sci. 2011 53 3388 3397 10.1016/j.corsci.2011.06.018 

  20. 20. Djerbi A. Bonnet S. Khelidj A. Baroghel-Bouny V. Influence of traversing crack on chloride diffusion into concrete Cem. Concr. Res. 2008 38 877 883 10.1016/j.cemconres.2007.10.007 

  21. 21. Paulsson-Tralla J. Silfwerbrand J. Estimation of chloride ingress in uncracked and cracked concrete using measured surface concentrations ACI Mater. J. 2013 38 65 74 

  22. 22. Kato E. Kato Y. Uomoto T. Development of simulation model of chloride ion transportation in cracked concrete J. Adv. Concr. Technol. 2005 3 85 94 10.3151/jact.3.85 

  23. 23. Ishida T. Iqbal P.O. Anh H.T.L. Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete Cem. Concr. Res. 2009 39 913 923 10.1016/j.cemconres.2009.07.014 

  24. 24. Jang S.Y. Kim B.S. Oh B.H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests Cem. Concr. Res. 2011 41 9 19 10.1016/j.cemconres.2010.08.018 

  25. 25. Yoo J.-H. Lee H.-S. Ismail M. An analytical study on the water penetration and diffusion into concrete under water pressure Constr. Build. Mater. 2011 25 99 108 10.1016/j.conbuildmat.2010.06.052 

  26. 26. Xiao L. Chen D. Jiang M. Xiao L. Mei G. Experimental and numerical analysis of chloride transport in finite concrete under reverse water pressure Constr. Build. Mater. 2021 304 124576 10.1016/j.conbuildmat.2021.124576 

  27. 27. Jin Z.-Q. Zhao T.-J. Gao S. Hou B.-R. Chloride ion penetration into concrete under hydraulic pressure J. Cent. South Univ. 2013 20 3723 3728 10.1007/s11771-013-1900-5 

  28. 28. Xu J. Li F. Zhao J. Huang L. Model of time-dependent and stress-dependent chloride penetration of concrete under sus-tained axial pressure in the marine environment Constr. Build. Mater. 2018 170 207 217 10.1016/j.conbuildmat.2018.03.077 

  29. 29. Ding Y. Yang T. Liu H. Han Z. Zhou S. Wang Z. She A. Wei Y. Dong J. Experimental study and simulation calcu-lation of the chloride resistance of concrete under multiple factors Appl. Sci. 2021 11 5322 10.3390/app11125322 

  30. 30. Liu Z. Hyun B. Jin J. Hong K. Lee Y. OWC air chamber performance prediction under impulse turbine damping effects Sci. China Ser. E Technol. Sci. 2016 59 657 666 10.1007/s11431-016-6030-5 

  31. 31. KS F 2713 Standard Test Method for Analysis of Chloride in Concrete and Concrete Raw Materials Korean Standards Association Seoul, Korea 1995 

  32. 32. Lee J. Baek B.G. Kang S.P. Cho S.H. Bae J.Y. Kim K.M. An experimental study on the properties of marine concrete by combined deterioration test Proc. Korea Concr. Inst. 2011 23 383 384 

  33. 33. Yoo J.H. Lee S.H. Kyung J.W. Park J.S. A study on the water penetration and diffusion into concrete under water pressure Archit. Inst. Korea 2007 23 143 150 10.1016/j.conbuildmat.2010.06.052 

  34. 34. Lee S.H. Kim H.D. A durability assessment on complex deterioration of concrete with ground granulated blast-furnace slag replacement J. Korea Inst. Struct. Maint. Insp. 2010 14 171 175 

  35. 35. ASTM D1141 Standard Practice for Preparation of Substitute Ocean Water ASTM International West Conshohocken, PA, USA 2021 

  36. 36. Pack S.-W. Jung M.S. Song H.-W. Kim S.-H. Ann K.Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment Cem. Concr. Res. 2010 40 302 312 10.1016/j.cemconres.2009.09.023 

  37. 37. Ji T. Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO 2 Cem. Concr. Res. 2005 35 1943 1947 10.1016/j.cemconres.2005.07.004 

  38. 38. Kim G.T. Kim G.Y. Nam J.S. Lee B.K. Lim C.H. Influence of hydrostatic pressure on chloride ion penetration of marine concrete J. Korea Inst. Struct. Maint. Insp. 2019 23 78 84 

  39. 39. Kim N.W. Yeo D.G. Song J.H. Bae J.S. A study on the characteristic of capillary pore and chloride diffusivity by electrical difference of high-strength concrete using metakaolin J. Korea Concr. Inst. 2007 19 499 506 

  40. 40. Liu J. Tang K. Pan D. Lei Z. Wang W. Xing F. Surface chloride concentration of concrete under shallow immersion conditions Materials 2014 7 6620 6631 10.3390/ma7096620 28788202 

  41. 41. Andrade C. Climent M.-Á. De Vera G. Procedure for calculating the chloride diffusion coefficient and surface concentration from a profile having a maximum beyond the concrete surface Mater. Struct. 2015 48 863 869 10.1617/s11527-015-0543-4 

  42. 42. ASTM C1556 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion ASTM International West Conshohocken, PA, USA 2016 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로