최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Materials, v.14 no.20, 2021년, pp.6023 -
Hwang, Euichul (Department of Architectural Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Kim, Gyuyong (sksdmlcjf@naver.com (E.H.)) , Choe, Gyeongcheol (speed1382@gmail.com (G.C.)) , Yoon, Minho (minjae931226@naver.com (M.S.)) , Son, Minjae (syhtw@naver.com (D.S.)) , Suh, Dongkyun (wp05125@naver.com (H.E.)) , Eu, Hamin (j.nam@cnu.ac.kr (J.N.)) , Nam, Jeongsoo (Department of Architectural Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea)
In this study, the effects of heating rate and compressive strength on the spalling behavior of single-sided heated ring-restrained concrete with compressive strengths of 60 and 100 MPa were investigated. The vapor pressure and restrained stress inside the concrete were evaluated under fast- and slo...
1. Choe G.C. Kim G.Y. Gucunski N. Lee S.H. Evaluation of the mechanical properties of 200MPa ultra-high-strength concrete at elevated temperatures and residual strength of column Constr. Build. Mater. 2015 86 159 168 10.1016/j.conbuildmat.2015.03.074
2. Kodur V.K.R. Spalling in high strength concrete exposed to fire-concerns, causes, critical parameters and cures Proceedings of the Structures Congress, Advanced Technology in Structural Engineering Philadelphia, PA, USA 8–10 May 2000
3. Khoury G.A. Effect of fire on concrete and concrete structures Prog. Struct. Eng. Mater. 2000 2 429 447 10.1002/pse.51
4. Rossino C. Lo Monte F. Cangiano S. Felicetti R. Gambarova P.G. HPC subjected to high temperature: A study on intrinsic and mechanical damage Key Eng. Mater. 2015 629 239 244 10.4028/www.scientific.net/KEM.629-630.239
5. Fu Y. Li L. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures Mater. Struct. 2011 44 361 376 10.1617/s11527-010-9632-6
6. Li L. Khan M. Bai C. Shi K. Uniaxial Tensile Behavior, Flexural Properties, Empirical Calculation and Microstructure of Multi-Scale Fiber Reinforced Cement-Based Material at Elevated Temperature Materials 2021 14 1827 10.3390/ma14081827 33917108
7. Khan M. Cao M. Chaopeng X. Ali M. Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature Fire Mater. 2021 10.1002/fam.2968
8. Farzampour A. Compressive behavior of concrete under environmental effects Compressive Strength of Concrete IntechOpen London, UK 2019
9. Kalifa P. Menneteau F.D. Quenard D. Spalling and pore pressure in HPC at high temperatures Cem. Concr. Res. 2000 30 1915 1927 10.1016/S0008-8846(00)00384-7
10. Mugume R.B. Horiguchi T. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures Cem. Concr. Res. 2011 41 1150 1156
11. Ozawa M. Morimoto H. Effects of various fibres on high-temperature spalling in high-performance concrete Constr. Build. Mater. 2014 71 83 92 10.1016/j.conbuildmat.2014.07.068
12. Kalifa P. Chene G. Galle C. High-temperature behaviour of HPC with polypropylene fibres from spalling to microstructure Cem. Concr. Res. 2001 31 1487 1499 10.1016/S0008-8846(01)00596-8
13. Suhaendi S.L. Horiguchi T. Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition Cem. Concr. Res. 2006 36 1672 1678 10.1016/j.cemconres.2006.05.006
14. Choe G.C. Kim G.Y. Kim H.S. Hwang E.C. Lee S.K. Son M.J. Nam J.S. Influence of amorphous metallic fibers on spalling properties of high-strength concrete exposed to high temperature Constr. Build. Mater. 2020 263 120711 10.1016/j.conbuildmat.2020.120711
15. Lee G.C. Han D.Y. Han M.C. Han C.G. Son H.J. Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete Constr. Build. Mater. 2012 34 313 320 10.1016/j.conbuildmat.2012.02.015
16. Hager I. Mróz K. Role of polypropylene fibres in concrete spalling risk mitigation in fire and test methods of fibres effectiveness evaluation Materials 2019 12 3869 10.3390/ma12233869
17. Lee T. Kim G. Choe G. Hwang E. Lee J. Ryu D. Nam J. Spalling resistance of fiber-reinforced ultra-high-strength concrete subjected to the ISO-834 standard fire curve: Effects of thermal strain and water vapor pressure Materials 2020 13 3792 10.3390/ma13173792
18. Zhang D. Liu Y. Tan K.H. Spalling resistance and mechanical properties of strain-hardening ultra-high performance concrete at elevated temperature Constr. Build. Mater. 2021 266 120961 10.1016/j.conbuildmat.2020.120961
19. Kodur V.K.R. Phan L. Critical factors governing the fire performance of high strength concrete systems Fire Saf. J. 2007 42 482 488 10.1016/j.firesaf.2006.10.006
20. Li Y. Tan K.H. Yang E.H. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling preven-tion of ultra-high performance concrete at elevated temperature Cem. Concr. Compos. 2019 96 174 181 10.1016/j.cemconcomp.2018.11.009
21. Hertz K.D. Heat Induced Explosion of Dense Concretes Report 166, CIB W14/84/33(DK) Institute of Building Design (Now Department of Buildings and Energy), Technical University of Denmark Lynby, Denmark 1984 20
22. Algourdin N. Pliya P. Beaucour A.L. Simon A. Noumowé A. Influence of polypropylene and steel fibres on thermal spalling and physical-mechanical properties of concrete under different heating rates Constr. Build. Mater. 2020 259 119690 10.1016/j.conbuildmat.2020.119690
23. Phan L.T. Lawson J.R. Davis F.L. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete Mater. Struct. 2001 34 83 91 10.1007/BF02481556
24. Phan L.T. Pore pressure and explosive spalling in concrete Mater. Struct. 2008 41 1623 1632 10.1617/s11527-008-9353-2
25. Choe G. Kim G.Y. Yoon M.H. Hwang E.C. Nam J.S. Gucunski N. Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type Cem. Concr. Res. 2019 116 1 10 10.1016/j.cemconres.2018.10.021
26. Ozawa M. Tanibe T. Kamata R. Uchida Y. Rokugo K. Parajulia S.S. Behavior of ring-restrained high-performance concrete under extreme heating and development of screening test Constr. Build. Mater. 2018 162 215 228 10.1016/j.conbuildmat.2017.11.144
27. Ozawa M. Shaikh F.U.A. A study on spalling behaviour of geopolymer mortars using ring restraint test Constr. Build. Mater. 2021 279 122494 10.1016/j.conbuildmat.2021.122494
28. International Standards Organizations Fire Resistance Tests. Elements of Building Construction ISO 834 ISO Geneva, Switzerland 1980
29. Rilem T.C. Test methods for mechanical properties of concrete at high temperatures: Part 3—Compressive strength for service and accident conditions Mater. Struct. 1995 28 410 414
30. Timoshenko S. Theory of Plates and Shells 2nd ed. McGraw-Hill Book Company New York, NY, USA 1959
31. Ichikawa Y. England G.L. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures Nucl. Eng. Des. 2004 228 245 259 10.1016/j.nucengdes.2003.06.011
32. Hermathy T.Z. Effect of moisture on the fire endurance of building materials moisture in relation to fire tests ASTM Spec. Tech. Publ. 1965 385 74 95
33. Jansson R. Fire spalling of concrete—A historical overview MATEC Web Conf. 2013 6 01001 10.1051/matecconf/20130601001
34. CEN Eurocode 2—Design of Concrete Structure European Standard EN 1992 European Committee for Standardization Brussels, Belgium 2004
35. Michikoshi S. Kobayashi Y. Kuroiwa S. Strain behaviour of compression concrete at high temperature AIJ J. 2007 621 169 174 (In Japanese)
36. Li Y. Zhang D. Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high-performance concrete (UHPC) at elevated temperature Constr. Build. Mater. 2021 271 121879 10.1016/j.conbuildmat.2020.121879
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.