$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design of zinc oxide nanoparticles and graphene hydrogel co-incorporated activated carbon for efficient capacitive deionization

Separation and purification technology, v.277, 2021년, pp.119428 -   

Yasin, Ahmed S. (Graduate School of Energy Science and Technology, Chungnam National University) ,  Yousef Mohamed, Ahmed (IPIT & Department of Physics, Jeonbuk National University) ,  Kim, Dong Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ,  Luu Luyen Doan, Thi (Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University) ,  Chougule, S.S (Graduate School of Energy Science and Technology, Chungnam National University) ,  Jung Professor, Namgee (Graduate School of Energy Science and Technology, Chungnam National University) ,  Nam Dr., Sungchan (Greenhouse Gas Research Laboratory, Korea Institute of Energy Research) ,  Lee Professor, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract The development of high-performance electrode materials is the main factor in improving the efficiency of the capacitive deionization (CDI) process. Activated carbon is the most extensively used electrode material because of its excellent physicochemical properties and low cost; however, i...

Keyword

참고문헌 (77)

  1. J. Hydrol. Huang 561 277 2018 10.1016/j.jhydrol.2018.04.015 Review of analytical models to stream depletion induced by pumping: Guide to model selection 

  2. Sci. Adv. Mekonnen 2 2 e1500323 2016 10.1126/sciadv.1500323 Four billion people facing severe water scarcity 

  3. Chemosphere Sayed 275 130001 2021 10.1016/j.chemosphere.2021.130001 Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater 

  4. J. Mol. Liq. Chen 333 116024 2021 10.1016/j.molliq.2021.116024 Molecular insights into desalination performance of lamellar graphene membranes: Significant of hydrophobicity and interlayer spacing 

  5. Prog. Mater Sci. Porada 58 1388 2013 10.1016/j.pmatsci.2013.03.005 Review on the science and technology of water desalination by capacitive deionization 

  6. Energy Environ. Sci. Suss 8 2296 2015 10.1039/C5EE00519A Water desalination via capacitive deionization: what is it and what can we expect from it? 

  7. Sep. Purif. Technol. Chen 274 2021 10.1016/j.seppur.2021.119063 Development of an integrated capacitive-electrodialysis process (CapED) for continuous, low-energy electrochemical deionization 

  8. Desalination Qin 455 100 2019 10.1016/j.desal.2019.01.003 Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis 

  9. Adv. Mater. Béguin 26 2014 Supercapacitors: carbons and electrolytes for advanced supercapacitors 

  10. J. Mol. Liq. Liu 332 2021 10.1016/j.molliq.2021.115863 Pore-scale study of capacitive charging and desalination process in porous electrodes and effects of porous structures 

  11. Phys. Rev. E Biesheuvel 81 3 2010 10.1103/PhysRevE.81.031502 Nonlinear dynamics of capacitive charging and desalination by porous electrodes 

  12. J. Colloid Interface Sci. Kim 446 317 2015 10.1016/j.jcis.2014.08.041 Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage 

  13. J. Mater. Chem. A Huang 5 2 470 2017 10.1039/C6TA06733F Carbon electrodes for capacitive deionization 

  14. Chemosphere Bharath 266 129048 2021 10.1016/j.chemosphere.2020.129048 Designed assembly of Ni/MAX (Ti3AlC2) and porous graphene-based asymmetric electrodes for capacitive deionization of multivalent ions 

  15. J. Electrochem. Soc. Farmer 143 1 159 1996 10.1149/1.1836402 Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes 

  16. Sep. Purif. Technol. Guo 266 118593 2021 10.1016/j.seppur.2021.118593 Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization 

  17. J. Mater. Chem. A Wang 2 13 4739 2014 10.1039/C3TA15152B Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization 

  18. RSC Adv. Chen 6 8 6730 2016 10.1039/C5RA26210K Enhanced capacitive desalination of MnO 2 by forming composite with multi-walled carbon nanotubes 

  19. Carbon Zornitta 123 318 2017 10.1016/j.carbon.2017.07.071 High-performance activated carbon from polyaniline for capacitive deionization 

  20. Desalination Yeh 367 60 2015 10.1016/j.desal.2015.03.035 Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio 

  21. Nat. Nanotechnol. Surwade 10 5 459 2015 10.1038/nnano.2015.37 Water desalination using nanoporous single-layer graphene 

  22. Energy Environ. Sci. Sun 4 4 1113 2011 10.1039/c0ee00683a Graphene based new energy materials 

  23. Chem. Soc. Rev. Liu 41 6 2283 2012 10.1039/C1CS15270J Biological and chemical sensors based on graphene materials 

  24. Sol. Energy Dao 191 420 2019 10.1016/j.solener.2019.09.016 A facile synthesis of ruthenium/reduced graphene oxide nanocomposite for effective electrochemical applications 

  25. ChemCatChem Li 9 9 1554 2017 10.1002/cctc.201700175 Graphene and their hybrid electrocatalysts for water splitting 

  26. small Compton 6 6 711 2010 10.1002/smll.200901934 Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials 

  27. PCCP Dong 12 9 2164 2010 10.1039/b914546j Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties 

  28. J. Mater. Chem. A Liu 5 27 13907 2017 10.1039/C7TA02653F Graphene-based materials for capacitive deionization 

  29. J. Mater. Chem. A Chang 9 3 1429 2021 10.1039/D0TA10087K Structurally and chemically engineered graphene for capacitive deionization 

  30. Nanoscale Li 4 18 5549 2012 10.1039/c2nr31467c Three-dimensional graphene architectures 

  31. Compos. B Eng. Van Hien 143 96 2018 10.1016/j.compositesb.2018.02.013 Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation 

  32. Electrochimica Acta Zafra 135 208 2014 10.1016/j.electacta.2014.04.182 A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water 

  33. J. Alloy. Compd. Yasin 729 764 2017 10.1016/j.jallcom.2017.09.185 Fabrication of N-doped & SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization 

  34. Chem. Eng. J. Yasin 371 166 2019 10.1016/j.cej.2019.04.043 Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization 

  35. Mater. Lett. Yasin 213 62 2018 10.1016/j.matlet.2017.11.001 Design of novel electrode for capacitive deionization using electrospun composite titania/zirconia nanofibers doped-activated carbon 

  36. Adv. Mater. Yin 25 43 6270 2013 10.1002/adma.201302223 Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water 

  37. Desalination Myint 305 24 2012 10.1016/j.desal.2012.08.010 Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach 

  38. J. Phys. D Appl. Phys. Arora 52 45 455304 2019 10.1088/1361-6463/ab3967 Capacitive deionization of NaCl from saline solution using graphene/CNTs/ZnO NPs based electrodes 

  39. ACS Appl. Mater. Interfaces Laxman 6 13 10113 2014 10.1021/am501041t Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with zinc oxide nanorods 

  40. Desalination Myint 344 236 2014 10.1016/j.desal.2014.03.037 Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes 

  41. Thin Solid Films Zhang 515 8789 2007 10.1016/j.tsf.2007.04.004 Structural and electrical properties of p-type ZnO films prepared by Ultrasonic Spray Pyrolysis 

  42. Mater. Charact. Gómez 58 708 2007 10.1016/j.matchar.2006.11.012 Properties of Al-doped ZnO thin films deposited by a chemical spray process 

  43. J. Alloy. Compd. Yasin 870 2021 10.1016/j.jallcom.2021.159422 One-pot synthesis of activated carbon decorated with ZnO nanoparticles for capacitive deionization application 

  44. Carbon Yuan 43 2913 2005 10.1016/j.carbon.2005.06.027 Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide 

  45. J. Electrochem. Soc. Ramani 148 4 A374 2001 10.1149/1.1357172 Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors 

  46. Adv. Mater. Sun 25 37 5153 2013 10.1002/adma.201301926 Developing polymer composite materials: carbon nanotubes or graphene? 

  47. Journal of the american chemical society Hummers 80 6 1958 10.1021/ja01539a017 Preparation of graphitic oxide 

  48. RSC Adv. Wang 4 101 57476 2014 10.1039/C4RA09995H Novel graphene oxide sponge synthesized by freeze-drying process for the removal of 2, 4, 6-trichlorophenol 

  49. Int. Mater. Rev. Li 57 1 37 2012 10.1179/1743280411Y.0000000011 Freeze casting of porous materials: review of critical factors in microstructure evolution 

  50. Chem. Eng. J. Zheng 290 353 2016 10.1016/j.cej.2016.01.076 Ultrafine nickel-copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes 

  51. Journal of the University of Chemical technology and Metallurgy Boycheva 47 155 2012 Fly ash from termal power plants burning domestic lignite coals as a silicate material for zeolite synthesis 

  52. Thin Solid Films Hamerský 38 101 1976 10.1016/0040-6090(76)90284-4 Influence of oxygen partial pressure and substrate temperature during vapour deposition on the structural properties of CdSe films 

  53. J. Mater. Res. Tanuma 10 1120 1995 10.1557/JMR.1995.1120 Synthesis of low density carbon crystal “carbolite” by quenching of carbon gas 

  54. J. Taiwan Inst. Chem. Eng. Fu 45 3007 2014 10.1016/j.jtice.2014.08.026 Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents 

  55. Mater. Sci. Eng., B Mani 188 94 2014 10.1016/j.mseb.2014.06.009 Improvement of interfacial bonding in carbon nanotube reinforced Fe-50Co composites by Ni-P coating: Effect on magnetic and mechanical properties 

  56. PloS one Shah 10 4 e0122603 2015 10.1371/journal.pone.0122603 Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies 

  57. Journal of the Chemical Society, Dalton Transactions Braga 2026 1979 10.1039/dt9790002026 Graphite lamellar compoundsStructure of transition-metal intercalates 

  58. Fuel Qu 249 45 2019 10.1016/j.fuel.2019.03.058 Effect of properties of activated carbon on malachite green adsorption 

  59. Catal. Today Shi 335 582 2019 10.1016/j.cattod.2019.04.070 Ultrasound-aasisted photodegradation of Alprazolam in aqueous media using a novel high performance nanocomosite hybridation g-C3N4/MWCNT/ZnO 

  60. Electrochimica Acta Niu 176 755 2015 10.1016/j.electacta.2015.07.012 An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid 

  61. Appl. Catal. B Zhao 79 208 2008 10.1016/j.apcatb.2007.09.044 Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame 

  62. Sep. Sci. Technol. Hristovski 43 3154 2008 10.1080/01496390802221691 Arsenate removal by iron (hydr) oxide modified granulated activated carbon: Modeling arsenate breakthrough with the pore surface diffusion model 

  63. Mater. Today Energy Dao 16 2020 Bimetallic PtSe nanoparticles incorporating with reduced graphene oxide as efficient and durable electrode materials for liquid-junction photovoltaic devices 

  64. Sol. Energy Dao 197 546 2020 10.1016/j.solener.2020.01.037 Nanoporous NiO nanosheets-based nanohybrid catalyst for efficient reduction of triiodide ions 

  65. Sep. Purif. Technol. Yasin 171 34 2016 10.1016/j.seppur.2016.07.014 Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode 

  66. Water Res. Zou 42 8-9 2340 2008 10.1016/j.watres.2007.12.022 Using mesoporous carbon electrodes for brackish water desalination 

  67. J. Mater. Chem. Zhang 22 29 14696 2012 10.1039/c2jm31393f Enhanced capacitive deionization performance of graphene/carbon nanotube composites 

  68. J. Mater. Chem. Peng 22 14 6603 2012 10.1039/c2jm16735b High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization 

  69. J. Mater. Chem. Li 22 31 15556 2012 10.1039/c2jm32207b Reduced graphene oxide and activated carbon composites for capacitive deionization 

  70. Sci. Rep. Yasin 8 1 2018 10.1038/s41598-017-19027-w Facile synthesis of TiO 2/ZrO 2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization 

  71. Desalination Yang 286 108 2012 10.1016/j.desal.2011.11.013 Preparing MnO2/PSS/CNTs composite electrodes by layer-by-layer deposition of MnO2 in the membrane capacitive deionisation 

  72. Sep. Purif. Technol. Ntakirutimana 258 2021 10.1016/j.seppur.2020.117987 Synergistic effects of ionic and nonionic surfactants treatment on activated carbon electrodes for inverted capacitive deionization 

  73. J. Mater. Chem. Li 19 6773 2009 10.1039/b907703k Electrosorption behavior of graphene in NaCl solutions 

  74. Adv. Funct. Mater. Yang 24 3917 2014 10.1002/adfm.201304091 Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance 

  75. J. Colloid Interface Sci. Xu 445 143 2015 10.1016/j.jcis.2015.01.003 Enhanced capacitive deionization performance of graphene by nitrogen doping 

  76. Sep. Purif. Technol. Feng 213 70 2019 10.1016/j.seppur.2018.12.026 Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization 

  77. Desalination Kim 342 70 2014 10.1016/j.desal.2013.07.016 TiO2 sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로