$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer

Nano energy, v.88, 2021년, pp.106276 -   

Huang, Huawei (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Hoyoung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Ahryeon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Seongbeen (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lim, Won-Gwang (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Park, Cheol-Young (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Seoa (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and T) ,  Kim, Soo-Kil ,  Lee, Jinwoo

Abstract AI-Helper 아이콘AI-Helper

Abstract The use of proton exchange membrane water electrolyzers (PEMWEs) is severely limited by large overpotentials and the low stability of their anode catalysts. The majority of the state-of-the-art anode catalysts have been tested in half-cells; however, it is highly desirable to design an ano...

Keyword

참고문헌 (48)

  1. Chem. Soc. Rev. Jiao 44 2060 2015 10.1039/C4CS00470A Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions 

  2. Nano Energy Huang 34 472 2017 10.1016/j.nanoen.2017.03.016 Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting 

  3. Adv. Mater. Wan 32 2020 10.1002/adma.201901349 Confining sub‐nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity 

  4. Int. J. Hydrog. Energy Carmo 38 4901 2013 10.1016/j.ijhydene.2013.01.151 A comprehensive review on PEM water electrolysis 

  5. Nat. Chem. Blasco-Ahicart 10 24 2018 10.1038/nchem.2874 Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media 

  6. Adv. Funct. Mater. Wu 30 2020 10.1002/adfm.201910274 Non‐noble‐metal‐based electrocatalysts toward the oxygen evolution reaction 

  7. Energy Storage Mater. Wang 16 24 2019 10.1016/j.ensm.2018.04.020 Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries 

  8. Nano Lett. Shang 20 5443 2020 10.1021/acs.nanolett.0c01925 Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction 

  9. Chin. Chem. Lett. Cao 31 2230 2020 10.1016/j.cclet.2020.01.037 Implanting Ni into N-doped puffed carbon: a new advanced electrocatalyst for oxygen evolution reaction 

  10. J. Phys. Chem. Lett. Danilovic 5 2474 2014 10.1021/jz501061n Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments 

  11. ACS Catal. Yu 9 9973 2019 10.1021/acscatal.9b02457 Recent advances and prospective in ruthenium-based materials for electrochemical water splitting 

  12. ACS Energy Lett. Roy 3 2045 2018 10.1021/acsenergylett.8b01178 Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces 

  13. Rare Metals Yu 40 440 2021 10.1007/s12598-020-01561-8 Preparation of mulberry-like RuO2 electrode material for supercapacitors 

  14. ACS Catal. Chen 10 1152 2020 10.1021/acscatal.9b04922 Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media 

  15. Energy Environ. Sci. Esswein 4 499 2011 10.1039/C0EE00518E Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters 

  16. Adv. Energy Mater. Ge 9 2019 Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media 

  17. Adv. Energy Mater. Faustini 9 2019 Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers 

  18. Appl. Catal. B Environ. Zhao 279 2020 10.1016/j.apcatb.2020.119400 Single-iron site catalysts with self-assembled dual-size architecture and hierarchical porosity for proton-exchange membrane fuel cells 

  19. Nano Energy Xu 80 2021 10.1016/j.nanoen.2020.105545 Recent advances in electrocatalysts for neutral and large-current-density water electrolysis 

  20. Nano Sel. Ou 2 492 2021 10.1002/nano.202000239 How to select effective electrocatalysts: Nano or single atom 

  21. Chin. Chem. Lett. Liu 31 2189 2020 10.1016/j.cclet.2019.12.009 Metal-organic framework membranes: From synthesis to electrocatalytic applications 

  22. Ind. Eng. Chem. Res. Huang 56 14245 2017 10.1021/acs.iecr.7b03351 Interface engineering of Ni3N@Fe3N heterostructure supported on carbon fiber for enhanced water oxidation 

  23. Adv. Energy Mater. Guan 7 2017 10.1002/aenm.201602391 Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis 

  24. Energy Environ. Sci. Huang 13 545 2020 10.1039/C9EE03273H Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting 

  25. Chem. Commun. (Camb. ) Chen 49 9500 2013 10.1039/c3cc44342f A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption 

  26. ACS Appl. Mater. Interfaces Hillman 10 5586 2018 10.1021/acsami.7b18506 Rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework membranes for tunable gas separations 

  27. Adv. Funct. Mater. Huang 30 2020 10.1002/adfm.202003889 Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting 

  28. Proc. Natl. Acad. Sci. USA Deng 115 5093 2018 10.1073/pnas.1800272115 Catalytic amino acid production from biomass-derived intermediates 

  29. Surf. Interface Anal. Ernst 40 334 2008 10.1002/sia.2675 Unraveling the oxidation of Ru using XPS 

  30. ACS Catal. Xu 7 1158 2017 10.1021/acscatal.6b03186 Efficient hydrogenation of various renewable oils over Ru-HAP catalyst in water 

  31. J. Phys. Chem. C Näslund 118 15315 2014 10.1021/jp503960q Formation of RuO(OH)2 on RuO2-based electrodes for hydrogen production 

  32. Sci. Rep. Wang 4 4452 2014 10.1038/srep04452 Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors 

  33. Adv. Mater. He 32 2020 10.1002/adma.202003577 Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high‐power PGM‐free cathodes in fuel cells 

  34. Energy Environ. Sci. Zhao 13 5143 2020 10.1039/D0EE01960G Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media 

  35. ACS Energy Lett. Chen 5 2909 2020 10.1021/acsenergylett.0c01384 Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media 

  36. Adv. Mater. Interfaces Han 3 2016 10.1002/admi.201500782 Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene 

  37. Adv. Mater. Feng 29 2017 10.1002/adma.201703798 Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis 

  38. Adv. Mater. Zhang 32 2020 Metal atom‐doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution 

  39. Nano Energy Huang 58 778 2019 10.1016/j.nanoen.2019.01.094 Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution 

  40. Adv. Energy Mater. Han 7 2017 10.1002/aenm.201602148 Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution 

  41. Appl. Catal. B Environ. Siracusano 164 488 2015 10.1016/j.apcatb.2014.09.005 Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers 

  42. Appl. Catal. B Environ. Pham 269 2020 10.1016/j.apcatb.2020.118762 IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers 

  43. J. Power Sources Zeng 342 947 2017 10.1016/j.jpowsour.2017.01.021 A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis 

  44. Appl. Catal. B Environ. Lee 179 285 2015 10.1016/j.apcatb.2015.05.027 Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis 

  45. Nano Energy Park 58 158 2019 10.1016/j.nanoen.2019.01.043 Ultra-low loading of IrO2 with an inverse-opal structure in a polymer-exchange membrane water electrolysis 

  46. Chem. Sci. Oh 6 3321 2015 10.1039/C5SC00518C Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers 

  47. Appl. Catal. B Environ. Rozain 182 153 2016 10.1016/j.apcatb.2015.09.013 Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I-Pure IrO2-based anodes 

  48. Appl. Catal. B Environ. Rozain 182 123 2016 10.1016/j.apcatb.2015.09.011 Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: part II - advanced oxygen electrodes 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로