$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Fabrication of Biocompatible Polycaprolactone-Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds 원문보기

Applied sciences, v.11 no.14, 2021년, pp.6351 -   

Kim, Chang Geun (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Han, Kyung Seok (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Lee, Sol (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Kim, Min Cheol (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Kim, Soo Young (College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Korea) ,  Nah, Junghyo (Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

Recently, three-dimensional printing (3DP) technology has been widely adopted in biology and biomedical applications, thanks to its capacity to readily construct complex 3D features. Using hot-melt extrusion 3DP, scaffolds for bone tissue engineering were fabricated using a composite of biodegradabl...

참고문헌 (33)

  1. Ngo Additive manufacturing (3D printing): A review of materials, methods, applications and challenges Compos. Part B Eng. 2018 10.1016/j.compositesb.2018.02.012 143 172 

  2. Sarvankar Additive Manufacturing in Automobile Industry Int. J. Res. Aeronaut. Mech. Eng. 2019 7 1 

  3. Espera 3D-printing and advanced manufacturing for electronics Prog. Addit. Manuf. 2019 10.1007/s40964-019-00077-7 4 245 

  4. 10.3390/jfb9010017 Tappa, K., and Jammalamadaka, U. (2018). Novel Biomaterials Used in Medical 3D Printing Techniques. J. Funct. Biomater., 9. 

  5. Chia Recent advances in 3D printing of biomaterials J. Biol. Eng. 2015 10.1186/s13036-015-0001-4 9 4 

  6. Bandyopadhyay 3D printing of biomaterials MRS Bull. 2015 10.1557/mrs.2015.3 40 108 

  7. Guvendiren Designing Biomaterials for 3D Printing ACS Biomater. Sci. Eng. 2016 10.1021/acsbiomaterials.6b00121 2 1679 

  8. 10.3390/jfb9010022 Jammalamadaka, U., and Tappa, K. (2018). Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. J. Funct. Biomater., 9. 

  9. Porter Bone tissue engineering: A review in bone biomimetics and drug delivery strategies Biotechnol. Prog. 2009 10.1002/btpr.246 25 1539 

  10. Cheung A critical review on polymer-based bio-engineered materials for scaffold development Compos. Part B Eng. 2007 10.1016/j.compositesb.2006.06.014 38 291 

  11. Escobedo Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study Mater. Sci. Eng. C Mater. Biol. Appl. 2017 10.1016/j.msec.2017.05.003 79 326 

  12. Szczes Synthesis of hydroxyapatite for biomedical applications Adv. Colloid. Interface Sci. 2017 10.1016/j.cis.2017.04.007 249 321 

  13. Rezaei In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process Mater. Sci. Eng. C Mater. Biol. Appl. 2013 10.1016/j.msec.2012.09.004 33 390 

  14. Labet Synthesis of polycaprolactone: A review Chem. Soc. Rev. 2009 10.1039/b820162p 38 3484 

  15. Totaro PCL-HA microscaffolds for in vitro modular bone tissue engineering J. Tissue Eng. Regen. Med. 2017 10.1002/term.2084 11 1865 

  16. Park Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering Bioprocess Biosyst. Eng. 2011 10.1007/s00449-010-0499-2 34 505 

  17. Shor Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro Biomaterials 2007 10.1016/j.biomaterials.2007.08.018 28 5291 

  18. Zimmerling 3D printing PCL/nHA bone scaffolds: Exploring the influence of material synthesis techniques Biomater. Res. 2021 10.1186/s40824-021-00204-y 25 3 

  19. Ma Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis RSC Adv. 2019 10.1039/C8RA06652C 9 5338 

  20. Jiao 3D printing of HA / PCL composite tissue engineering scaffolds Adv. Ind. Eng. Polym. Res. 2019 2 196 

  21. 10.1016/j.matdes.2021.109712 Li, Y., Yu, Z., Ai, F., Wu, C., Zhou, K., Cao, C., and Li, W. (2021). Characterization and evaluation of polycaprolactone/hydroxyapatite composite scaffolds with extra surface morphology by cryogenic printing for bone tissue engineering. Mater. Des., 205. 

  22. Kim Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds Mater. Lett. 2018 10.1016/j.matlet.2018.03.025 220 112 

  23. Qu Microscale electrohydrodynamic printing of biomimetic PCL/nHA composite scaffolds for bone tissue engineering Mater. Lett. 2016 10.1016/j.matlet.2016.09.035 185 554 

  24. Liu 3D printed PCL/SrHA scaffold for enhanced bone regeneration Chem. Eng. J. 2019 10.1016/j.cej.2019.01.015 362 269 

  25. Goncalves Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation J. Biomed. Mater. Res. B Appl. Biomater. 2016 10.1002/jbm.b.33432 104 1210 

  26. Tian Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds RSC Adv. 2020 10.1039/C9RA10275B 10 4805 

  27. 10.3390/polym13020257 Park, S., Kim, J.E., Han, J., Jeong, S., Lim, J.W., Lee, M.C., Son, H., Kim, H.B., Choung, Y.H., and Seonwoo, H. (2021). 3D-Printed Poly(epsilon-Caprolactone)/Hydroxyapatite Scaffolds Modified with Alkaline Hydrolysis Enhance Osteogenesis In Vitro. Polymers (Basel), 13. 

  28. Borjigin Electrospun fiber membranes enable proliferation of genetically modified cells Int. J. Nanomed. 2013 8 855 

  29. Schwerdt A Fully Passive Wireless Backscattering Neurorecording Microsystem Embedded in Dispersive Human-Head Phantom Medium IEEE Electron. Device Lett. 2012 10.1109/LED.2012.2190967 33 908 

  30. Rana An Implantable Antenna With Broadside Radiation for a Brain-Machine Interface IEEE Sens. J. 2019 10.1109/JSEN.2019.2924948 19 9200 

  31. Murphy Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds Cell Adhes. Migr. 2010 10.4161/cam.4.3.11747 4 377 

  32. Williams Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering Biomaterials 2005 10.1016/j.biomaterials.2004.11.057 26 4817 

  33. Karipinski The structural and mechanical properties of the bone J. Technol. 2017 3 43 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로