최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE robotics and automation letters, v.6 no.4, 2021년, pp.6497 - 6504
Kim, Yeong-Hyeon (KAIST, Division of Future Vehicle, Daejeon, Republic of Korea) , Shin, Ukcheol (KAIST, School of Electrical Engineering, Daejeon, Republic of Korea) , Park, Jinsun (KAIST, School of Electrical Engineering, Daejeon, Republic of Korea) , Kweon, In So (KAIST, School of Electrical Engineering, Daejeon, Republic of Korea)
In this letter, we propose a multi-spectral unsupervised domain adaptation for thermal image semantic segmentation. The proposed framework aims to address the data scarcity problem and boost segmentation performance in the thermal domain with the help of existing large-scale RGB datasets and segment...
Workshop on Challenges in Representation Learning Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks lee 2013 3
Proc Adv Neural Inf Process Syst Pytorch: An imperative style, high-performance deep learning library paszke 2019 8026
Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 2014 2672
Sun, Yuxiang, Zuo, Weixun, Yun, Peng, Wang, Hengli, Liu, Ming. FuseSeg: Semantic Segmentation of Urban Scenes Based on RGB and Thermal Data Fusion. IEEE transactions on automation science and engineering, vol.18, no.3, 1000-1011.
Proc IEEE/RSJ Int Conf Intell Robot Syst Heatnet: Bridging the day-night domain gap in semantic segmentation with thermal images vertens 2020 8461
Wang, Jingdong, Sun, Ke, Cheng, Tianheng, Jiang, Borui, Deng, Chaorui, Zhao, Yang, Liu, Dong, Mu, Yadong, Tan, Mingkui, Wang, Xinggang, Liu, Wenyu, Xiao, Bin. Deep High-Resolution Representation Learning for Visual Recognition. IEEE transactions on pattern analysis and machine intelligence, vol.43, no.10, 3349-3364.
Proc Int’l Conf Mach Learn Cycada: Cycle-consistent adversarial domain adaptation hoffman 2018 1989
Proc Int’l Conf Learn Representations Privileged adversarial learning from simulation lee 2018
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.. Microsoft COCO: Common Objects in Context. Lecture notes in computer science, vol.8693, 740-755.
Unsupervised depth and ego-motion estimation for monocular thermal video using multi-spectral consistency loss shin 2021
Sun, Yuxiang, Zuo, Weixun, Liu, Ming. RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes. IEEE robotics and automation letters, vol.4, no.3, 2576-2583.
Chen, Liang-Chieh, Papandreou, George, Kokkinos, Iasonas, Murphy, Kevin, Yuille, Alan L.. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE transactions on pattern analysis and machine intelligence, vol.40, no.4, 834-848.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.