$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment : DUNE Collaboration 원문보기

The European physical journal. C, Particles and fields, v.81 no.4, 2021년, pp.322 -   

Abi, B. (University of Oxford, Oxford, OX1 3RH UK) ,  Acciarri, R. (Fermi National Accelerator Laboratory, Batavia, IL 60510 USA) ,  Acero, M. A. (Universidad del Atlá) ,  Adamov, G. (ntico, Barranquilla, Atlá) ,  Adams, D. (ntico Colombia) ,  Adinolfi, M. (Georgian Technical University, Tbilisi, Georgia) ,  Ahmad, Z. (Brookhaven National Laboratory, Upton, NY 11973 USA) ,  Ahmed, J. (University of Bristol, Bristol, BS8 1TL UK) ,  Alion, T. (Variable Energy Cyclotron Centre, Kolkata, West Bengal 700 064 India) ,  Monsalve, S. Alonso (University of Warwick, Coventry, CV4 7AL UK) ,  Alt, C. (University of Sussex, Brighton, BN1 9RH UK) ,  Anderson, J. (CERN, The European Organization for Nuclear Research, 1211 Meyrin, Switzerland) ,  Andreopoulos, C. (ETH Zurich, Zurich, Switzerland) ,  Andrews, M. P. (Argonne National Laboratory, Argonne, IL 60439 USA) ,  Andrianala, F. (University of Liverpool, Liverpool, L69 7ZE UK) ,  Andringa, S. (Fermi National Accelerator Laboratory, Batavia, IL 60510 USA) ,  Ankowski, A. (University of Antananarivo, 101 Antananarivo, Madagascar) ,  Antonova, M. (Laborató) ,  Antusch, S. (rio de Instrumentaç) ,  Aranda-Fernandez, A. (ã) ,  Ariga, A. (o e Fí) ,  Arnold, L. O. (sica Experimental de Partí) ,  Arroyave, M. A. (culas, 1649-003, Lisbon and, 3004-516 Coimbra, Portugal) ,  Asaadi, J. (SLAC National A) ,  Aurisano, A. ,  Aushev, V. ,  Autiero, D. ,  Azfar, F. ,  Back, H. ,  Back, J. J. ,  Backhouse, C. ,  Baesso, P. ,  Bagby, L. ,  Bajou, R. ,  Balasubramanian, S. ,  Baldi, P. ,  Bambah, B. ,  Barao, F. ,  Barenboim, G. ,  Barker, G. J. ,  Barkhouse, W. ,  Barnes, C. ,  Barr, G. ,  Monarca, J. Barranco ,  Barros, N. ,  Barrow, J. L. ,  Bashyal, A. ,  Basque, V. ,  Bay, F. ,  Alba, J. L. Bazo ,  Beacom, J. F. ,  Bechetoille, E. ,  Behera, B. ,  Bellantoni, L. ,  Bellettini, G. ,  Bellini, V. ,  Beltramello, O. ,  Belver, D. ,  Benekos, N. ,  Neves, F. Bento ,  Berger, J. ,  Berkman, S. ,  Bernardini, P. ,  Berner, R. M. ,  Berns, H. ,  Bertolucci, S. ,  Betancourt, M. ,  Bezawada

Abstract AI-Helper 아이콘AI-Helper

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system...

참고문헌 (304)

  1. 1. DUNE Collaboration, B. Abi et al., Deep underground neutrino experiment (DUNE), far detector technical design report, vol. II. DUNE Phys. arXiv:2002.03005 [hep-ex] 

  2. 2. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05471 [physics.ins-det] 

  3. 3. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1512.06148 [physics.ins-det] 

  4. 4. DUNE Collaboration, R. Acciarri et al., Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.02984 [physics.ins-det] 

  5. 5. DUNE Collaboration, B. Abi et al., Volume I. Introduction to DUNE. J. Inst. 15 (08), T08008 (2020). 10.1088/1748-0221/15/08/T08008. arXiv:2002.02967 [physics.ins-det] 

  6. 6. MINERvA Collaboration, L. Aliaga et?al., Neutrino flux predictions for the NuMI beam. Phys. Rev. D 94 (9), 092005 (2016). 10.1103/PhysRevD.94.092005. 10.1103/PhysRevD.95.039903. arXiv:1607.00704 [hep-ex] [Addendum: Phys. Rev. D 95 (3), 039903 (2017)] 

  7. 7. GEANT4 Collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A 506 , 250?303 (2003). 10.1016/S0168-9002(03)01368-8 

  8. 8. Allison J Geant4 developments and applications IEEE Trans. Nucl. Sci. 2006 53 270 10.1109/TNS.2006.869826 

  9. 9. Allison J Recent developments in Geant4 Nucl. Instrum. Methods A 2016 835 186 225 10.1016/j.nima.2016.06.125 

  10. 10. Huber P Lindner M Winter W Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator) Comput. Phys. Commun. 2005 167 195 10.1016/j.cpc.2005.01.003 

  11. 11. Huber P Kopp J Lindner M Rolinec M Winter W New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general long baseline experiment simulator Comput. Phys. Commun. 2007 177 432 438 10.1016/j.cpc.2007.05.004 

  12. 12. Andreopoulos C The GENIE neutrino Monte Carlo generator Nucl. Instrum. Methods A 2010 614 87 104 10.1016/j.nima.2009.12.009 

  13. 13. C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher, T. Golan, R. Hatcher, G. Perdue, J. Yarba, The GENIE neutrino Monte Carlo generator: physics and user manual. arXiv:1510.05494 [hep-ph] 

  14. 14. Dentler M Hernandez-Cabezudo A Kopp J Machado PAN Maltoni M Martinez-Soler I Schwetz T Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos JHEP 2018 08 010 10.1007/JHEP08(2018)010 

  15. 15. Gariazzo S Giunti C Laveder M Li YF Updated global 3+1 analysis of short-baseline neutrino oscillations JHEP 2017 06 135 10.1007/JHEP06(2017)135 

  16. 16. Harari H Leurer M Recommending a standard choice of Cabibbo angles and KM phases for any number of generations Phys. Lett. B 1986 181 123 128 10.1016/0370-2693(86)91268-2 

  17. 17. J. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES. https://www.mpi-hd.mpg.de/personalhomes/globes/tools/snu-1.0.pdf 

  18. 18. J.R. Todd, Search for sterile neutrinos with MINOS and MINOS+. PhD thesis, Cincinnati U (2018). 10.2172/1484184 

  19. 19. Collaboration LSND Aguilar-Arevalo AA Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam Phys. Rev. D 2001 64 112007 10.1103/PhysRevD.64.112007 

  20. 20. R.N. Mohapatra, P.B. Pal, Massive neutrinos in physics and astrophysics. Second edition. World Sci. Lect. Notes Phys. 60 , 1?397 (1998) [World Sci. Lect. Notes Phys. 72 , 1 (2004)] 

  21. 21. J.W.F. Valle, J.C. Romao, Neutrinos in high energy and astroparticle physics. Physics textbook. Wiley-VCH, Weinheim (2015). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411976.html 

  22. 22. Fukugita M Yanagida T Physics of Neutrinos and Applications to Astrophysics 2003 Berlin Springer 593 

  23. 23. Gell-Mann M Ramond P Slansky R Complex spinors and unified theories Conf. Proc. C 1979 790927 315 321 

  24. 24. Yanagida T Horizontal symmetry and masses of neutrinos Conf. Proc. C 1979 7902131 95 99 

  25. 25. Mohapatra RN Senjanovic G Neutrino mass and spontaneous parity violation Phys. Rev. Lett. 1980 44 912 10.1103/PhysRevLett.44.912 

  26. 26. Schechter J Valle J Neutrino masses in SU(2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} $ \times $ U(1) theories Phys. Rev. D 1980 22 2227 10.1103/PhysRevD.22.2227 

  27. 27. Mohapatra RN Valle JWF Neutrino mass and baryon number nonconservation in superstring models Phys. Rev. D 1986 34 1642 10.1103/PhysRevD.34.1642 

  28. 28. Escrihuela FJ Forero DV Miranda OG Tortola M Valle JWF On the description of non-unitary neutrino mixing Phys. Rev. D 2015 92 5 053009 10.1103/PhysRevD.92.053009 

  29. 29. Xing Z-Z Correlation between the charged current interactions of light and heavy Majorana neutrinos Phys. Lett. B 2008 660 515 521 10.1016/j.physletb.2008.01.038 

  30. 30. Xing Z-Z A full parametrization of the 6 X 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos Phys. Rev. D 2012 85 013008 10.1103/PhysRevD.85.013008 

  31. 31. Blennow M Coloma P Fernandez-Martinez E Hernandez-Garcia J Lopez-Pavon J Non-unitarity, sterile neutrinos, and non-standard neutrino interactions JHEP 2017 04 153 10.1007/JHEP04(2017)153 

  32. 32. Shrock RE New tests for, and bounds on, neutrino masses and lepton mixing Phys. Lett. B 1980 96 159 164 10.1016/0370-2693(80)90235-X 

  33. 33. Shrock RE General theory of weak leptonic and semileptonic decays. 1. Leptonic pseudoscalar meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing Phys. Rev. D 1981 24 1232 10.1103/PhysRevD.24.1232 

  34. 34. Shrock RE General theory of weak processes involving neutrinos. 2. Pure leptonic decays Phys. Rev. D 1981 24 1275 10.1103/PhysRevD.24.1275 

  35. 35. Langacker P London D Mixing between ordinary and exotic fermions Phys. Rev. D 1988 38 886 10.1103/PhysRevD.38.886 

  36. 36. Bilenky SM Giunti C Seesaw type mixing and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mu } \rightarrow \nu _{\tau }$$\end{document} $ \nu _{\mu }\rightarrow \nu _{\tau }$ oscillations Phys. Lett. B 1993 300 137 140 10.1016/0370-2693(93)90760-F 

  37. 37. Nardi E Roulet E Tommasini D Limits on neutrino mixing with new heavy particles Phys. Lett. B 1994 327 319 326 10.1016/0370-2693(94)90736-6 

  38. 38. Tommasini D Barenboim G Bernabeu J Jarlskog C Nondecoupling of heavy neutrinos and lepton flavor violation Nucl. Phys. B 1995 444 451 467 10.1016/0550-3213(95)00201-3 

  39. 39. Antusch S Biggio C Fernandez-Martinez E Gavela M Lopez-Pavon J Unitarity of the leptonic mixing matrix JHEP 2006 0610 084 10.1088/1126-6708/2006/10/084 

  40. 40. Fernandez-Martinez E Gavela MB Lopez-Pavon J Yasuda O CP-violation from non-unitary leptonic mixing Phys. Lett. B 2007 649 427 435 10.1016/j.physletb.2007.03.069 

  41. 41. Antusch S Baumann JP Fernandez-Martinez E Non-standard neutrino interactions with matter from physics beyond the standard model Nucl. Phys. B 2009 810 369 388 10.1016/j.nuclphysb.2008.11.018 

  42. 42. Biggio C The contribution of fermionic seesaws to the anomalous magnetic moment of leptons Phys. Lett. B 2008 668 378 384 10.1016/j.physletb.2008.09.004 

  43. 43. Antusch S Blennow M Fernandez-Martinez E Lopez-Pavon J Probing non-unitary mixing and CP-violation at a Neutrino Factory Phys. Rev. D 2009 80 033002 10.1103/PhysRevD.80.033002 

  44. 44. Forero DV Morisi S Tortola M Valle JWF Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw JHEP 2011 09 142 10.1007/JHEP09(2011)142 

  45. 45. Alonso R Dhen M Gavela M Hambye T Muon conversion to electron in nuclei in type-I seesaw models JHEP 2013 1301 118 10.1007/JHEP01(2013)118 

  46. 46. Antusch S Fischer O Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities JHEP 2014 1410 94 10.1007/JHEP10(2014)094 

  47. 47. Abada A Toma T Electric dipole moments of charged leptons with sterile fermions JHEP 2016 02 174 10.1007/JHEP02(2016)174 

  48. 48. Fernandez-Martinez E Hernandez-Garcia J Lopez-Pavon J Lucente M Loop level constraints on Seesaw neutrino mixing JHEP 2015 10 130 10.1007/JHEP10(2015)130 

  49. 49. S. Parke, M. Ross-Lonergan, Unitarity and the three flavour neutrino mixing matrix. Phys. Rev. D 93 , 113009 (2016). 10.1103/PhysRevD.93.113009. arXiv:1508.05095 [hep-ph] 

  50. 50. Miranda OG Tortola M Valle JWF New ambiguity in probing CP violation in neutrino oscillations Phys. Rev. Lett. 2016 117 6 061804 10.1103/PhysRevLett.117.061804 27541461 

  51. 51. Fong CS Minakata H Nunokawa H A framework for testing leptonic unitarity by neutrino oscillation experiments JHEP 2017 02 114 10.1007/JHEP02(2017)114 

  52. 52. Escrihuela FJ Forero DV Miranda OG Tortola M Valle JWF Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study New J. Phys. 2017 19 9 093005 10.1088/1367-2630/aa79ec 

  53. 53. Fernandez-Martinez E Hernandez-Garcia J Lopez-Pavon J Global constraints on heavy neutrino mixing JHEP 2016 08 033 10.1007/JHEP08(2016)033 

  54. 54. M. Blennow, E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES. Comput. Phys. Commun. 181 , 227?231 (2010). 10.1016/j.cpc.2009.09.014. arXiv:0903.3985 [hep-ph]. http://wwwth.mpp.mpg.de/members/blennow/montecubes/ 

  55. 55. Farzan Y Tortola M Neutrino oscillations and non-standard interactions Front. Phys. 2018 6 10 10.3389/fphy.2018.00010 

  56. 56. M. Masud, A. Chatterjee, P. Mehta, Probing CP violation signal at DUNE in presence of non-standard neutrino interactions. J. Phys. G 43 (9), 095005 (2016). 10.1088/0954-3899/43/9/095005/meta. 10.1088/0954-3899/43/9/095005. arXiv:1510.08261 [hep-ph] 

  57. 57. Masud M Mehta P Nonstandard interactions spoiling the CP violation sensitivity at DUNE and other long baseline experiments Phys. Rev. D 2016 94 013014 10.1103/PhysRevD.94.013014 

  58. 58. Masud M Mehta P Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments Phys. Rev. D 2016 94 5 053007 10.1103/PhysRevD.94.053007 

  59. 59. F. Capozzi, S.S. Chatterjee, A. Palazzo, Neutrino mass ordering obscured by non-standard interactions. Phys. Rev. Lett. 124 , 111801 (2020). 10.1103/PhysRevLett.124.111801. arXiv:1908.06992 [hep-ph] 

  60. 60. Agarwalla, S.S. Chatterjee, A. Palazzo, Degeneracy between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{23}$$\end{document} $ \theta _{23}$ octant and neutrino non-standard interactions at DUNE. Phys. Lett. B 762 , 64?71 (2016). 10.1016/j.physletb.2016.09.020. arXiv:1607.01745 [hep-ph] 

  61. 61. de Gouvea A Kelly KJ Non-standard neutrino interactions at DUNE Nucl. Phys. B 2016 908 318 335 10.1016/j.nuclphysb.2016.03.013 

  62. 62. Coloma P Non-standard interactions in propagation at the deep underground neutrino experiment JHEP 2016 03 016 10.1007/JHEP03(2016)016 

  63. 63. Ohlsson T Status of non-standard neutrino interactions Rep. Prog. Phys. 2013 76 044201 10.1088/0034-4885/76/4/044201 23481442 

  64. 64. Miranda OG Nunokawa H Non standard neutrino interactions: current status and future prospects New J. Phys. 2015 17 9 095002 10.1088/1367-2630/17/9/095002 

  65. 65. Blennow M Choubey S Ohlsson T Pramanik D Raut SK A combined study of source, detector and matter non-standard neutrino interactions at DUNE JHEP 2016 08 090 10.1007/JHEP08(2016)090 

  66. 66. Bakhti P Khan AN Wang W Sensitivities to charged-current nonstandard neutrino interactions at DUNE J. Phys. 2017 G44 12 125001 10.1088/1361-6471/aa9098 

  67. 67. Mikheev S Smirnov AY Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos Sov. J. Nucl. Phys. 1985 42 913 917 

  68. 68. Wolfenstein L Neutrino oscillations in matter Phys. Rev. D 1978 17 2369 2374 10.1103/PhysRevD.17.2369 

  69. 69. Guzzo M Masiero A Petcov S On the MSW effect with massless neutrinos and no mixing in the vacuum Phys. Lett. B 1991 260 154 160 10.1016/0370-2693(91)90984-X 

  70. 70. Guzzo M Petcov S On the matter enhanced transitions of solar neutrinos in the absence of neutrino mixing in vacuum Phys. Lett. B 1991 271 172 178 10.1016/0370-2693(91)91295-7 

  71. 71. Roulet E MSW effect with flavor changing neutrino interactions Phys. Rev. D 1991 44 935 938 10.1103/PhysRevD.44.R935 

  72. 72. Valle J Resonant oscillations of massless neutrinos in matter Phys. Lett. B 1987 199 432 10.1016/0370-2693(87)90947-6 

  73. 73. Particle Data Group Collaboration, K.A. Olive et?al., Review of particle physics. Chin. Phys. C 38 , 090001 (2014). 10.1088/1674-1137/38/9/090001 

  74. 74. Davidson S Pena Garay C Rius N Santamaria A Present and future bounds on nonstandard neutrino interactions JHEP 2003 0303 011 10.1088/1126-6708/2003/03/011 

  75. 75. Gonzalez-Garcia M Maltoni M Phenomenology with massive neutrinos Phys. Rep. 2008 460 1 129 10.1016/j.physrep.2007.12.004 

  76. 76. Biggio C Blennow M Fernandez-Martinez E General bounds on non-standard neutrino interactions JHEP 2009 0908 090 10.1088/1126-6708/2009/08/090 

  77. 77. LBNE Collaboration, C. Adams et?al., The long-baseline neutrino experiment: exploring fundamental symmetries of the Universe (2013). arXiv:1307.7335 [hep-ex] 

  78. 78. Gonzalez-Garcia MC Maltoni M Determination of matter potential from global analysis of neutrino oscillation data JHEP 2013 09 152 10.1007/JHEP09(2013)152 

  79. 79. Esteban I Gonzalez-Garcia MC Maltoni M Martinez-Soler I Salvado J Updated constraints on non-standard interactions from global analysis of oscillation data JHEP 2018 08 180 10.1007/JHEP08(2018)180 

  80. 80. Roe B Matter density versus distance for the neutrino beam from Fermilab to Lead, South Dakota, and comparison of oscillations with variable and constant density Phys. Rev. D 2017 95 11 113004 10.1103/PhysRevD.95.113004 

  81. 81. Kelly KJ Parke SJ Matter density profile shape effects at DUNE Phys. Rev. D 2018 98 1 015025 10.1103/PhysRevD.98.015025 

  82. 82. Dziewonski AM Anderson DL Preliminary reference earth model Phys. Earth Planet. Inter. 1981 25 297 356 10.1016/0031-9201(81)90046-7 

  83. 83. Stacey F Physics of the Earth 1977 2 Hoboken Wiley 

  84. 84. Shen W Ritzwoller MH Crustal and uppermost mantle structure beneath the United States J. Geophys. Res.: Solid Earth 2016 121 4306 10.1002/2016JB012887 

  85. 85. A.?Chatterjee, F.?Kamiya, C.A. Moura, J.?Yu, Impact of matter density profile shape on non-standard interactions at DUNE. arXiv:1809.09313 [hep-ph] 

  86. 86. Rout J Masud M Mehta P Can we probe intrinsic CP and T violations and nonunitarity at long baseline accelerator experiments? Phys. Rev. D 2017 95 7 075035 10.1103/PhysRevD.95.075035 

  87. 87. Masud M Bishai M Mehta P Extricating new physics scenarios at DUNE with higher energy beams Sci. Rep. 2019 9 1 352 10.1038/s41598-018-36790-6 30674996 

  88. 88. R.F. Streater, A.S. Wightman, PCT, spin and statistics, and all that (1989) 

  89. 89. Barenboim G Lykken JD A model of CPT violation for neutrinos Phys. Lett. B 2003 554 73 80 10.1016/S0370-2693(02)03262-8 

  90. 90. Kostelecky VA Mewes M Lorentz and CPT violation in neutrinos Phys. Rev. D 2004 69 016005 10.1103/PhysRevD.69.016005 

  91. 91. Diaz JS Kostelecky VA Mewes M Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations Phys. Rev. D 2009 80 076007 10.1103/PhysRevD.80.076007 

  92. 92. Kostelecky A Mewes M Neutrinos with Lorentz-violating operators of arbitrary dimension Phys. Rev. D 2012 85 096005 10.1103/PhysRevD.85.096005 

  93. 93. Barenboim G Ternes CA Tortola M Neutrinos, DUNE and the world best bound on CPT invariance Phys. Lett. B 2018 780 631 637 10.1016/j.physletb.2018.03.060 

  94. 94. Barenboim G Ternes CA Tortola M New physics vs new paradigms: distinguishing CPT violation from NSI Eur. Phys. J. C 2019 79 5 390 10.1140/epjc/s10052-019-6900-7 

  95. 95. Barenboim G Masud M Ternes CA Tortola M Exploring the intrinsic Lorentz-violating parameters at DUNE Phys. Lett. B 2019 788 308 315 10.1016/j.physletb.2018.11.040 

  96. 96. Schwingenheuer B CPT tests in the neutral kaon system Phys. Rev. Lett. 1995 74 4376 4379 10.1103/PhysRevLett.74.4376 10058491 

  97. 97. Barenboim G Salvado J Cosmology and CPT violating neutrinos Eur. Phys. J. C 2017 77 11 766 10.1140/epjc/s10052-017-5347-y 

  98. 98. de Salas PF Forero DV Ternes CA Tortola M Valle JWF Status of neutrino oscillations 2018: 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} $ \sigma $ hint for normal mass ordering and improved CP sensitivity Phys. Lett. B 2018 782 633 640 10.1016/j.physletb.2018.06.019 

  99. 99. Super-Kamiokande Collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I?IV. Phys. Rev. D 97 (7), 072001 (2018). 10.1103/PhysRevD.97.072001. arXiv:1710.09126 [hep-ex] 

  100. 100. IceCube Collaboration, M.G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91 (7), 072004 (2015). 10.1103/PhysRevD.91.072004. arXiv:1410.7227 [hep-ex] 

  101. 101. IceCube Collaboration, M.G. Aartsen et al., Measurement of atmospheric neutrino oscillations at 6?56?GeV with IceCube DeepCore. Phys. Rev. Lett. 120 (7), 071801 (2018). 10.1103/PhysRevLett.120.071801. arXiv:1707.07081 [hep-ex] 

  102. 102. ANTARES Collaboration, S. Adrian-Martinez et al., Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Phys. Lett. B 714 , 224?230 (2012). 10.1016/j.physletb.2012.07.002. arXiv:1206.0645 [hep-ex] 

  103. 103. B. Cleveland, T. Daily, J. Davis, Raymond, J.R. Distel, K. Lande et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys.J. 496 , 505?526 (1998). 10.1086/305343 

  104. 104. Kaether F Hampel W Heusser G Kiko J Kirsten T Reanalysis of the GALLEX solar neutrino flux and source experiments Phys. Lett. B 2010 685 47 54 10.1016/j.physletb.2010.01.030 

  105. 105. SAGE Collaboration, J.N. Abdurashitov et?al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 2002?2007 data-taking period. Phys. Rev. C 80 , 015807 (2009). 10.1103/PhysRevC.80.015807. arXiv:0901.2200 [nucl-ex] 

  106. 106. Super-Kamiokande Collaboration, J. Hosaka et?al., Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73 , 112001 (2006). 10.1103/PhysRevD.73.112001. arXiv:hep-ex/0508053 

  107. 107. Super-Kamiokande Collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78 , 032002 (2008). 10.1103/PhysRevD.78.032002. arXiv:0803.4312 [hep-ex] 

  108. 108. Super-Kamiokande Collaboration, K.?Abe et?al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83 , 052010 (2011). 10.1103/PhysRevD.83.052010. arXiv:1010.0118 [hep-ex] 

  109. 109. Y. Nakano, PhD Thesis, University of Tokyo (2016). http://www-sk.icrr.u-tokyo.ac.jp/sk/_pdf/articles/2016/doc_thesis_naknao.pdf 

  110. 110. SNO Collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of He-3 proportional counters at the sudbury neutrino observatory. Phys. Rev. Lett. 101 , 111301 (2008). 10.1103/PhysRevLett.101.111301. arXiv:0806.0989 [nucl-ex] 

  111. 111. SNO Collaboration, B. Aharmim et al., Low energy threshold analysis of the phase I and phase II data sets of the sudbury neutrino observatory. Phys. Rev. C 81 , 055504 (2010). 10.1103/PhysRevC.81.055504. arXiv:0910.2984 [nucl-ex] 

  112. 112. Borexino Collaboration, G. Bellini et?al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89 (11), 112007 (2014). 10.1103/PhysRevD.89.112007. arXiv:1308.0443 [hep-ex] 

  113. 113. K2K Collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment. Phys. Rev. D 74 , 072003 (2006). 10.1103/PhysRevD.74.072003. arXiv:hep-ex/0606032 [hep-ex] 

  114. 114. MINOS Collaboration, P.?Adamson et?al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS. Phys.Rev.Lett. 110 (25), 251801 (2013). 10.1103/PhysRevLett.110.251801. arXiv:1304.6335 [hep-ex] 

  115. 115. MINOS Collaboration, P.?Adamson et?al., Combined analysis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mu }$$\end{document} $ \nu _{\mu }$ disappearance and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mu } \rightarrow \nu _{e}$$\end{document} $ \nu _{\mu }\rightarrow \nu _{e}$ appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112 , 191801 (2014). 10.1103/PhysRevLett.112.191801. arXiv:1403.0867 [hep-ex] 

  116. 116. T2K Collaboration, K.?Abe et?al., Combined analysis of neutrino and antineutrino oscillations at T2K. Phys. Rev. Lett. 118 (15), 151801 (2017). 10.1103/PhysRevLett.118.151801. arXiv:1701.00432 [hep-ex] 

  117. 117. T2K Collaboration, K.?Abe et?al., Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times 10^{21}$$\end{document} $ \times 10^{21}$ protons on target. Phys. Rev. D 96 (1), 011102 (2017). 10.1103/PhysRevD.96.011102. arXiv:1704.06409 [hep-ex] 

  118. 118. NOvA Collaboration, P.?Adamson et?al., Measurement of the neutrino mixing angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{23}$$\end{document} $ \theta _{23}$ in NOvA. Phys. Rev. Lett. 118 (15), 151802 (2017). 10.1103/PhysRevLett.118.151802. arXiv:1701.05891 [hep-ex] 

  119. 119. NOvA Collaboration, P.?Adamson et al., Constraints on oscillation parameters from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _e$$\end{document} $ \nu _{e}$ appearance and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _\mu $$\end{document} $ \nu _{\mu }$ disappearance in NOvA. Phys. Rev. Lett. 118 (23), 231801 (2017). 10.1103/PhysRevLett.118.231801. arXiv:1703.03328 [hep-ex] 

  120. 120. KamLAND Collaboration, A.?Gando et al., Constraints on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{13}$$\end{document} $ \theta _{13}$ from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND. Phys. Rev. D 83 , 052002 (2011). 10.1103/PhysRevD.83.052002. arXiv:1009.4771 [hep-ex] 

  121. 121. Daya Bay Collaboration, F.P. An et?al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D 95 (7), 072006 (2017). 10.1103/PhysRevD.95.072006. arXiv:1610.04802 [hep-ex] 

  122. 122. RENO Collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 116 (21), 211801 (2016). 10.1103/PhysRevLett.116.211801. arXiv:1511.05849 [hep-ex] 

  123. 123. Double Chooz Collaboration, Y.?Abe et?al., Improved measurements of the neutrino mixing angle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{13}$$\end{document} $ \theta _{13}$ with the Double Chooz detector. JHEP 10 , 086 (2014). 10.1007/JHEP02(2015)074, 10.1007/JHEP10(2014)086. arXiv:1406.7763 [hep-ex] [Erratum: JHEP 02 , 074 (2015)] 

  124. 124. Colladay D Kostelecky VA CPT violation and the standard model Phys. Rev. D 1997 55 6760 6774 10.1103/PhysRevD.55.6760 

  125. 125. Kostelecky VA Mewes M Lorentz and CPT violation in the neutrino sector Phys. Rev. D 2004 70 031902 10.1103/PhysRevD.70.031902 

  126. 126. Kostelecky VA Mewes M Lorentz violation and short-baseline neutrino experiments Phys. Rev. D 2004 70 076002 10.1103/PhysRevD.70.076002 

  127. 127. Diaz JS Kostelecky A Lehnert R Relativity violations and beta decay Phys. Rev. D 2013 88 7 071902 10.1103/PhysRevD.88.071902 

  128. 128. Diaz JS Kostelecky A Mewes M Testing relativity with high-energy astrophysical neutrinos Phys. Rev. D 2014 89 4 043005 10.1103/PhysRevD.89.043005 

  129. 129. IceCube Collaboration, M.G. Aartsen et?al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14 (9), 961?966 (2018). 10.1038/s41567-018-0172-2. arXiv:1709.03434 [hep-ex] 

  130. 130. Super-Kamiokande Collaboration, K.?Abe et?al., Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91 (5), 052003 (2015). 10.1103/PhysRevD.91.052003. arXiv:1410.4267 [hep-ex] 

  131. 131. IceCube Collaboration, M.G. Aartsen et?al., Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nat. Phys. 14 (9), 961?966 (2018). 10.1038/s41567-018-0172-2. arXiv:1709.03434 [hep-ex] 

  132. 132. Kostelecky VA Mewes M Signals for Lorentz violation in electrodynamics Phys. Rev. D 2002 66 056005 10.1103/PhysRevD.66.056005 

  133. 133. Honda M SajjadAthar M Kajita T Kasahara K Midorikawa S Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model Phys. Rev. D 2015 92 2 023004 10.1103/PhysRevD.92.023004 

  134. 134. J. Picone et al., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107 (A12), SIA 15?1 (2002). 10.1029/2002JA009430 

  135. 135. Particle Data Group Collaboration, M.?Tanabashi et?al., Review of particle physics. Phys. Rev. D 98 (3), 030001 (2018). 10.1103/PhysRevD.98.030001 

  136. 136. Czyz W Sheppey GC Walecka JD Neutrino production of lepton pairs through the point four-fermion interaction Nuovo Cim. 1964 34 404 435 10.1007/BF02734586 

  137. 137. Lovseth J Radomiski M Kinematical distributions of neutrino-produced lepton triplets Phys. Rev. D 1971 3 2686 2706 10.1103/PhysRevD.3.2686 

  138. 138. Fujikawa K The self-coupling of weak lepton currents in high-energy neutrino and muon reactions Ann. Phys. 1971 68 102 162 10.1016/0003-4916(71)90244-2 

  139. 139. Koike K Konuma M Kurata K Sugano K Neutrino production of lepton pairs. 1 Prog. Theor. Phys. 1971 46 1150 1169 10.1143/PTP.46.1150 

  140. 140. Koike K Konuma M Kurata K Sugano K Neutrino production of lepton pairs. 2 Prog. Theor. Phys. 1971 46 1799 1804 10.1143/PTP.46.1799 

  141. 141. Brown RW Hobbs RH Smith J Stanko N Intermediate boson. III. Virtual-boson effects in neutrino trident production Phys. Rev. D 1972 6 3273 3292 10.1103/PhysRevD.6.3273 

  142. 142. Belusevic R Smith J W-Z interference in neutrino-nucleus scattering Phys. Rev. D 1988 37 2419 10.1103/PhysRevD.37.2419 

  143. 143. Zhou B Beacom JF Neutrino-nucleus cross sections for W-boson and trident production Phys. Rev. D 2020 101 3 036011 10.1103/PhysRevD.101.036011 

  144. 144. Zhou B Beacom JF W -boson and trident production in TeV?PeV neutrino observatories Phys. Rev. D 2020 101 3 036010 10.1103/PhysRevD.101.036010 

  145. 145. CHARM-II Collaboration, D.?Geiregat et?al., First observation of neutrino trident production. Phys. Lett. B 245 , 271?275 (1990). 10.1016/0370-2693(90)90146-W 

  146. 146. CCFR Collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference. Phys. Rev. Lett. 66 , 3117?3120 (1991). 10.1103/PhysRevLett.66.3117 

  147. 147. NuTeV Collaboration, T.?Adams et?al., Evidence for diffractive charm production in muon-neutrino Fe and anti-muon-neutrino Fe scattering at the Tevatron. Phys. Rev. D 61 , 092001 (2000). 10.1103/PhysRevD.61.092001. arXiv:hep-ex/9909041 [hep-ex] 

  148. 148. W. Altmannshofer, S. Gori, J. Martin-Albo, A. Sousa, M. Wall2bank, Neutrino tridents at DUNE. Phys. Rev. D 100 (11), 115029 (2019). 10.1103/PhysRevD.100.115029. arXiv:1902.06765 [hep-ph] 

  149. 149. Ballett P Hostert M Pascoli S Perez-Gonzalez YF Tabrizi Z Zukanovich Funchal R Neutrino trident scattering at near detectors JHEP 2019 01 119 10.1007/JHEP01(2019)119 

  150. 150. Ballett P Hostert M Pascoli S Perez-Gonzalez YF Tabrizi Z Zukanovich Funchal R \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^\prime $$\end{document} $ Z'$ s in neutrino scattering at DUNE Phys. Rev. D 2019 100 5 055012 10.1103/PhysRevD.100.055012 

  151. 151. Altmannshofer W Gori S Pospelov M Yavin I Neutrino trident production: a powerful probe of new physics with neutrino beams Phys. Rev. Lett. 2014 113 091801 10.1103/PhysRevLett.113.091801 25215977 

  152. 152. DELPHI, OPAL, LEP Electroweak, ALEPH and L3 Collaboration, S.?Schael et?al., Electroweak measurements in electron?positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532 , 119?244 (2013). 10.1016/j.physrep.2013.07.004. arXiv:1302.3415 [hep-ex] 

  153. 153. He XG Joshi GC Lew H Volkas RR NEW Z-prime PHENOMENOLOGY Phys. Rev. D 1991 43 22 24 10.1103/PhysRevD.43.R22 

  154. 154. He X-G Joshi GC Lew H Volkas RR Simplest Z-prime model Phys. Rev. D 1991 44 2118 2132 10.1103/PhysRevD.44.2118 

  155. 155. Baek S Deshpande NG He XG Ko P Muon anomalous g-2 and gauged L(muon)- L(tau) models Phys. Rev. D 2001 64 055006 10.1103/PhysRevD.64.055006 

  156. 156. Harigaya K Igari T Nojiri MM Takeuchi M Tobe K Muon g-2 and LHC phenomenology in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\mu -L_\tau $$\end{document} $ L_{\mu }-L_{\tau }$ gauge symmetric model JHEP 2014 03 105 10.1007/JHEP03(2014)105 

  157. 157. Altmannshofer W Gori S Pospelov M Yavin I Quark flavor transitions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\mu -L_\tau $$\end{document} $ L_{\mu }-L_{\tau }$ models Phys. Rev. D 2014 89 095033 10.1103/PhysRevD.89.095033 

  158. 158. Baek S Ko P Phenomenology of U(1)(L(mu)-L(tau)) charged dark matter at PAMELA and colliders JCAP 2009 0910 011 10.1088/1475-7516/2009/10/011 

  159. 159. Altmannshofer W Gori S Profumo S Queiroz FS Explaining dark matter and B decay anomalies with an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\mu - L_\tau $$\end{document} $ L_{\mu }-L_{\tau }$ model JHEP 2016 12 106 10.1007/JHEP12(2016)106 

  160. 160. CMS Collaboration, A.M. Sirunyan et al., Search for an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\mu }-L_{\tau }$$\end{document} $ L_{\mu }-L_{\tau }$ gauge boson using Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow 4\mu $$\end{document} $ \rightarrow 4\mu $ events in proton?proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} =$$\end{document} $ \sqrt{s}=$ 13 TeV. Phys. Lett. B 792 , 345?368 (2019). 10.1016/j.physletb.2019.01.072. arXiv:1808.03684 [hep-ex] 

  161. 161. BaBar Collaboration, J.P. Lees et?al., Search for a muonic dark force at BABAR. Phys. Rev. D 94 (1), 011102 (2016). 10.1103/PhysRevD.94.011102. arXiv:1606.03501 [hep-ex] 

  162. 162. Bellini G Precision measurement of the 7Be solar neutrino interaction rate in Borexino Phys. Rev. Lett. 2011 107 141302 10.1103/PhysRevLett.107.141302 22107184 

  163. 163. Harnik R Kopp J Machado PAN Exploring nu signals in dark matter detectors JCAP 2012 1207 026 10.1088/1475-7516/2012/07/026 

  164. 164. Borexino Collaboration, M. Agostini et al., First simultaneous precision spectroscopy of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} $ \mathit{pp}$ , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7$$\end{document} $ ^{7}$ Be, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pep$$\end{document} $ \mathit{pep}$ solar neutrinos with Borexino phase-II. Phys. Rev. D 100 (8), 082004 (2019). 10.1103/PhysRevD.100.082004. arXiv:1707.09279 

  165. 165. Ahlgren B Ohlsson T Zhou S Comment on “Is dark matter with long-range interactions a solution to all small-scale problems of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} $ \Uplambda $ cold dark matter cosmology?” Phys. Rev. Lett. 2013 111 19 199001 10.1103/PhysRevLett.111.199001 24266494 

  166. 166. Kamada A Yu H-B Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube Phys. Rev. D 2015 92 11 113004 10.1103/PhysRevD.92.113004 

  167. 167. Keshavarzi A Nomura D Teubner T Muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} $ g-2$ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (M_Z^2)$$\end{document} $ \alpha (M_{Z}^{2})$ : a new data-based analysis Phys. Rev. D 2018 97 11 114025 10.1103/PhysRevD.97.114025 

  168. 168. Araki T Kaneko F Ota T Sato J Shimomura T MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment Phys. Rev. D 2016 93 1 013014 10.1103/PhysRevD.93.013014 

  169. 169. Kamada A Kaneta K Yanagi K Yu H-B Self-interacting dark matter and muon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} $ g-2$ in a gauged U \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1)_{L_{\mu } - L_{\tau }}$$\end{document} $ (1)_{{L_{\mu }}-{L_{\tau }}}$ model JHEP 2018 06 117 10.1007/JHEP06(2018)117 

  170. 170. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641 , A6 (2020). 10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO] 

  171. 171. J.?Alexander et?al., Dark sectors 2016 workshop: community report (2016). arXiv:1608.08632 [hep-ph]. http://inspirehep.net/record/1484628/files/arXiv:1608.08632.pdf 

  172. 172. M.?Battaglieri et?al., US cosmic visions: new ideas in dark matter 2017: community report. arXiv:1707.04591 [hep-ph] 

  173. 173. LoSecco J Sulak L Galik R Horstkotte J Knauer J Williams HH Soukas A Wanderer PJ Weng W Limits on the production of neutral penetrating states in a beam dump Phys. Lett. 1981 102B 209 212 10.1016/0370-2693(81)91064-9 

  174. 174. Dutta B Kim D Liao S Park J-C Shin S Strigari LE Dark matter signals from timing spectra at neutrino experiments Phys. Rev. Lett. 2020 124 12 121802 10.1103/PhysRevLett.124.121802 32281857 

  175. 175. Agashe K Cui Y Necib L Thaler J (In)direct detection of boosted dark matter JCAP 2014 10 062 10.1088/1475-7516/2014/10/062 

  176. 176. Belanger G Park J-C Assisted freeze-out JCAP 2012 1203 038 10.1088/1475-7516/2012/03/038 

  177. 177. D’Eramo F Thaler J Semi-annihilation of dark matter JHEP 2010 06 109 10.1007/JHEP06(2010)109 

  178. 178. Huang J Zhao Y Dark matter induced nucleon decay: model and signatures JHEP 2014 02 077 10.1007/JHEP02(2014)077 

  179. 179. Berger J Cui Y Zhao Y Detecting boosted dark matter from the sun with large volume neutrino detectors JCAP 2015 1502 02 005 10.1088/1475-7516/2015/02/005 

  180. 180. Cherry JF Frandsen MT Shoemaker IM Direct detection phenomenology in models where the products of dark matter annihilation interact with nuclei Phys. Rev. Lett. 2015 114 231303 10.1103/PhysRevLett.114.231303 26196791 

  181. 181. Giudice GF Kim D Park J-C Shin S Inelastic boosted dark matter at direct detection experiments Phys. Lett. B 2018 780 543 552 10.1016/j.physletb.2018.03.043 

  182. 182. Cui Y Pospelov M Pradler J Signatures of dark radiation in neutrino and dark matter detectors Phys. Rev. D 2018 97 10 103004 10.1103/PhysRevD.97.103004 

  183. 183. Bringmann T Pospelov M Novel direct detection constraints on light dark matter Phys. Rev. Lett. 2019 122 17 171801 10.1103/PhysRevLett.122.171801 31107056 

  184. 184. Alhazmi H Kong K Mohlabeng G Park J-C Boosted dark matter at the deep underground neutrino experiment JHEP 2017 04 158 10.1007/JHEP04(2017)158 

  185. 185. Kim D Park J-C Shin S Dark matter ‘collider’ from inelastic boosted dark matter Phys. Rev. Lett. 2017 119 16 161801 10.1103/PhysRevLett.119.161801 29099208 

  186. 186. A. Chatterjee, A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, J. Yu, Search for boosted dark matter at ProtoDUNE. Phys. Rev. D 98 (7), 075027 (2018). 10.1103/PhysRevD.98.075027. arXiv:1803.03264 [hep-ph] 

  187. 187. Kim D Kong K Park J-C Shin S Boosted dark matter quarrying at surface neutrino detectors JHEP 2018 08 155 10.1007/JHEP08(2018)155 

  188. 188. Necib L Moon J Wongjirad T Conrad JM Boosted dark matter at neutrino experiments Phys. Rev. D 2017 95 7 075018 10.1103/PhysRevD.95.075018 

  189. 189. Kong K Mohlabeng G Park J-C Boosted dark matter signals uplifted with self-interaction Phys. Lett. B 2015 743 256 266 10.1016/j.physletb.2015.02.057 

  190. 190. Super-Kamiokande Collaboration, C.?Kachulis et?al., Search for boosted dark matter interacting with electrons in super-Kamiokande. Phys. Rev. Lett. 120 (22), 221301 (2018). 10.1103/PhysRevLett.120.221301. arXiv:1711.05278 [hep-ex] 

  191. 191. V. De Romeri, K.J. Kelly, P.A.N. Machado, DUNE-PRISM Sensitivity to Light Dark Matter. Phys. Rev. D 100 (9), 095010 (2019). 10.1103/PhysRevD.100.095010. arXiv:1903.10505 [hep-ph] 

  192. 192. C.M. Marshall, K.S. McFarland, C. Wilkinson, Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 101 (3), 032002 (2020). 10.1103/PhysRevD.101.032002. arXiv:1910.10996 [hep-ex] 

  193. 193. LDMX Collaboration, T.?Akesson et?al., Light dark matter eXperiment (LDMX). arXiv:1808.05219 [hep-ex] 

  194. 194. de Niverville P Frugiuele C Hunting sub-GeV dark matter with the NO \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} $ \nu $ A near detector Phys. Rev. D 2019 99 5 051701 10.1103/PhysRevD.99.051701 

  195. 195. MiniBooNE DM Collaboration, A.A. Aguilar-Arevalo et?al., Dark matter search in nucleon, pion, and electron channels from a proton beam dump with MiniBooNE. Phys. Rev. D 98 (11), 112004 (2018). 10.1103/PhysRevD.98.112004. arXiv:1807.06137 [hep-ex] 

  196. 196. BaBar Collaboration, J.P. Lees et?al., Search for invisible decays of a dark photon produced in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e}^{+}{e}^{-}$$\end{document} $ e^{+}e^{-}$ collisions at BaBar. Phys. Rev. Lett. 119 (13), 131804 (2017). 10.1103/PhysRevLett.119.131804. arXiv:1702.03327 [hep-ex] 

  197. 197. Davier M Nguyen Ngoc H An unambiguous search for a light higgs boson Phys. Lett. B 1989 229 150 155 10.1016/0370-2693(89)90174-3 

  198. 198. NA48/2 Collaboration, J.R. Batley et?al., Search for the dark photon in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^0$$\end{document} $ \pi ^{0}$ decays. Phys. Lett. B 746 , 178?185 (2015). 10.1016/j.physletb.2015.04.068. arXiv:1504.00607 [hep-ex] 

  199. 199. Bjorken JD Ecklund S Nelson WR Abashian A Church C Lu B Mo LW Nunamaker TA Rassmann P Search for neutral metastable penetrating particles produced in the SLAC beam dump Phys. Rev. D 1988 38 3375 10.1103/PhysRevD.38.3375 

  200. 200. Riordan EM A search for short lived axions in an electron beam dump experiment Phys. Rev. Lett. 1987 59 755 10.1103/PhysRevLett.59.755 10035863 

  201. 201. Bjorken JD Essig R Schuster P Toro N New fixed-target experiments to search for dark gauge forces Phys. Rev. D 2009 80 075018 10.1103/PhysRevD.80.075018 

  202. 202. Bross A Crisler M Pordes SH Volk J Errede S Wrbanek J A search for shortlived particles produced in an electron beam dump Phys. Rev. Lett. 1991 67 2942 2945 10.1103/PhysRevLett.67.2942 10044598 

  203. 203. Navarro JF Frenk CS White SDM The structure of cold dark matter halos Astrophys. J. 1996 462 563 575 10.1086/177173 

  204. 204. Navarro JF Frenk CS White SDM A Universal density profile from hierarchical clustering Astrophys. J. 1997 490 493 508 10.1086/304888 

  205. 205. D. Kim, P.A. Machado, J.-C. Park, S. Shin, Optimizing energetic light dark matter searches in dark matter and neutrino experiments. JHEP 07 , 057 (2020). 10.1007/JHEP07(2020)057. arXiv:2003.07369 [hep-ph] 

  206. 206. A. De Roeck, D. Kim, Z.G. Moghaddam, J.-C. Park, S. Shin, L.H. Whitehead, Probing energetic light dark matter with multi-particle tracks signatures at DUNE. JHEP 11 , 043 (2020). 10.1007/JHEP11(2020)043. arXiv:2005.08979 [hep-ph] 

  207. 207. Formaggio JA Zeller GP From eV to EeV: neutrino cross sections across energy scales Rev. Mod. Phys. 2012 84 1307 1341 10.1103/RevModPhys.84.1307 

  208. 208. Banerjee D Dark matter search in missing energy events with NA64 Phys. Rev. Lett. 2019 123 12 121801 10.1103/PhysRevLett.123.121801 31633975 

  209. 209. NA64 Collaboration, D.?Banerjee et?al., Search for vector mediator of Dark Matter production in invisible decay mode. Phys. Rev. D 97 (7), 072002 (2018). 10.1103/PhysRevD.97.072002. arXiv:1710.00971 [hep-ex] 

  210. 210. Beacham J Physics beyond colliders at CERN: beyond the standard model working group report J. Phys. G 2020 47 1 010501 10.1088/1361-6471/ab4cd2 

  211. 211. NA64 Collaboration, D. Banerjee et al., Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^+e^-$$\end{document} $ e^{+}e^{-}$ pairs. Phys. Rev. D 101 (7), 071101 (2020). 10.1103/PhysRevD.101.071101. arXiv:1912.11389 [hep-ex] 

  212. 212. A.L. Read, Modified frequentist analysis of search results (the cl(s) method), in Workshop on Confidence Limits, CERN, Geneva, Switzerland, 17?18 Jan 2000: Proceedings (2000), pp. 81?101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205 

  213. 213. ATLAS, CMS, LHC Higgs Combination Group Collaboration, Procedure for the LHC Higgs boson search combination in summer 2011 

  214. 214. Dermisek R Hall JP Lunghi E Shin S A new avenue to charged Higgs discovery in multi-Higgs models JHEP 2014 04 140 10.1007/JHEP04(2014)140 

  215. 215. Dermisek R Hall JP Lunghi E Shin S Limits on vectorlike leptons from searches for anomalous production of multi-lepton events JHEP 2014 12 013 10.1007/JHEP12(2014)013 

  216. 216. Dermisek R Lunghi E Shin S New constraints and discovery potential for Higgs to Higgs cascade decays through vectorlike leptons JHEP 2016 10 081 10.1007/JHEP10(2016)081 

  217. 217. K. Griest, D. Seckel, Cosmic asymmetry, neutrinos and the sun. Nucl. Phys. B 283 , 681?705 (1987). 10.1016/0550-3213(87)90293-8. 10.1016/0550-3213(88)90409-9 [Erratum: Nucl. Phys. B 296 , 1034 (1988)] 

  218. 218. Gould A WIMP distribution in and evaporation from the sun Astrophys. J. 1987 321 560 10.1086/165652 

  219. 219. J.?Berger, A module for boosted dark matter event generation in GENIE (forthcoming) 

  220. 220. https://cdcvs.fnal.gov/redmine/projects/dunetpc 

  221. 221. http://soltrack.sourceforge.net 

  222. 222. Super-Kamiokande Collaboration, M.?Fechner et?al., Kinematic reconstruction of atmospheric neutrino events in a large water Cherenkov detector with proton identification. Phys. Rev. D 79 , 112010 (2009). 10.1103/PhysRevD.79.112010. arXiv:0901.1645 [hep-ex] 

  223. 223. PICO Collaboration, C. Amole et al., Dark matter search results from the complete exposure of thePICO-60 C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} $ _{3}$ F \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8$$\end{document} $ _{8}$ bubble chamber. Phys. Rev. D 100 (2), 022001 (2019). 10.1103/PhysRevD.100.022001. arXiv:1902.04031 [astro-ph.CO] 

  224. 224. PandaX-II Collaboration, J.?Xia et?al., PandaX-II constraints on spin-dependent WIMP-nucleon effective interactions. Phys. Lett. B 792 , 193?198 (2019). 10.1016/j.physletb.2019.02.043. arXiv:1807.01936 [hep-ex] 

  225. 225. J. Berger, Y. Cui, M. Graham, L. Necib, G. Petrillo, D. Stocks, Y.-T. Tsai, Y. Zhao, Prospects for detecting boosted dark matter in DUNE through hadronic interactions. arXiv:1912.05558 [hep-ph] 

  226. 226. Pati JC Salam A Is baryon number conserved? Phys. Rev. Lett. 1973 31 661 664 10.1103/PhysRevLett.31.661 

  227. 227. Georgi H Glashow S Unity of all elementary particle forces Phys. Rev. Lett. 1974 32 438 441 10.1103/PhysRevLett.32.438 

  228. 228. Langacker P Grand unified theories and proton decay Phys. Rep. 1981 72 185 10.1016/0370-1573(81)90059-4 

  229. 229. de Boer W Grand unified theories and supersymmetry in particle physics and cosmology Prog. Part. Nucl. Phys. 1994 33 201 302 10.1016/0146-6410(94)90045-0 

  230. 230. Nath P FileviezPerez P Proton stability in grand unified theories, in strings and in branes Phys. Rep. 2007 441 191 317 10.1016/j.physrep.2007.02.010 

  231. 231. Dimopoulos S Raby S Wilczek F Proton decay in supersymmetric models Phys. Lett. B 1982 112 133 10.1016/0370-2693(82)90313-6 

  232. 232. Dimopoulos S Georgi H Softly broken supersymmetry and SU(5) Nucl. Phys. B 1981 193 150 162 10.1016/0550-3213(81)90522-8 

  233. 233. Sakai N Yanagida T Proton decay in a class of supersymmetric grand unified models Nucl. Phys. B 1982 197 533 10.1016/0550-3213(82)90457-6 

  234. 234. Nath P Chamseddine AH Arnowitt RL Nucleon decay in supergravity unified theories Phys. Rev. D 1985 32 2348 2358 10.1103/PhysRevD.32.2348 

  235. 235. Shafi Q Tavartkiladze Z Flavor problem, proton decay and neutrino oscillations in SUSY models with anomalous U(1) Phys. Lett. B 2000 473 272 280 10.1016/S0370-2693(99)01433-1 

  236. 236. Lucas V Raby S Nucleon decay in a realistic SO(10) SUSY GUT Phys. Rev. D 1997 55 6986 7009 10.1103/PhysRevD.55.6986 

  237. 237. Pati JC Probing grand unification through neutrino oscillations, leptogenesis, and proton decay Subnucl. Ser. 2003 40 194 236 10.1142/S0217751X03017427 

  238. 238. Babu K Pati JC Wilczek F Suggested new modes in supersymmetric proton decay Phys. Lett. B 1998 423 337 347 10.1016/S0370-2693(98)00108-7 

  239. 239. Alciati ML Feruglio F Lin Y Varagnolo A Proton lifetime from SU(5) unification in extra dimensions JHEP 2005 03 054 10.1088/1126-6708/2005/03/054 

  240. 240. Altarelli G Meloni D A non supersymmetric SO(10) grand unified model for all the physics below \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{GUT}$$\end{document} $ M_{\mathit{GUT}}$ JHEP 2013 08 021 10.1007/JHEP08(2013)021 

  241. 241. Super-Kamiokande Collaboration, K.?Abe et?al., Search for proton decay via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \nu K^+$$\end{document} $ p\rightarrow \nu K^{+}$ using 260 kiloton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document} $ \cdot $ year data of Super-Kamiokande. Phys. Rev. D 90 (7), 072005 (2014). 10.1103/PhysRevD.90.072005. arXiv:1408.1195 [hep-ex] 

  242. 242. Super-Kamiokande Collaboration, K.?Abe et?al., Search for proton decay via \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow e^+\pi ^0$$\end{document} $ p\rightarrow e^{+}\pi ^{0}$ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow \mu ^+\pi ^0$$\end{document} $ p\rightarrow \mu ^{+}\pi ^{0}$ in 0.31 megaton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document} $ \cdot $ years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 95 (1), 012004 (2017). 10.1103/PhysRevD.95.012004. arXiv:1610.03597 [hep-ex] 

  243. 243. Super-Kamiokande Collaboration, K.?Abe et?al., Search for nucleon decay into charged antilepton plus meson in 0.316 megaton \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document} $ \cdot $ years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 96 (1), 012003 (2017). 10.1103/PhysRevD.96.012003. arXiv:1705.07221 [hep-ex] 

  244. 244. Hyper-Kamiokande Collaboration, K.?Abe et al., Hyper-Kamiokande design report. arXiv:1805.04163 [physics.ins-det] 

  245. 245. JUNO Collaboration, Z.?Djurcic et?al., JUNO conceptual design report. arXiv:1508.07166 [physics.ins-det] 

  246. 246. Phillips DG II Neutron?antineutron oscillations: theoretical status and experimental prospects Phys. Rep. 2016 612 1 45 10.1016/j.physrep.2015.11.001 

  247. 247. A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5 , 32?35 (1967). 10.1070/PU1991v034n05ABEH002497 [Usp. Fiz. Nauk 161 (5), 61 (1991)] 

  248. 248. Nussinov S Shrock R N?anti-N oscillations in models with large extra dimensions Phys. Rev. Lett. 2002 88 171601 10.1103/PhysRevLett.88.171601 12005743 

  249. 249. Arnold JM Fornal B Wise MB Simplified models with baryon number violation but no proton decay Phys. Rev. D 2013 87 075004 10.1103/PhysRevD.87.075004 

  250. 250. Girmohanta S Shrock R Baryon-number-violating nucleon and dinucleon decays in a model with large extra dimensions Phys. Rev. D 2020 101 1 015017 10.1103/PhysRevD.101.015017 

  251. 251. Girmohanta S Shrock R Nucleon decay and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} $ n$ - \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{n}}}$$\end{document} $ \overline{n}$ oscillations in a left-right symmetric model with large extra dimensions Phys. Rev. D 2020 101 9 095012 10.1103/PhysRevD.101.095012 

  252. 252. Baldo-Ceolin M A New experimental limit on neutron?anti-neutron oscillations Z. Phys. C 1994 63 409 416 10.1007/BF01580321 

  253. 253. Super-Kamiokande Collaboration, K.?Abe et?al., The search for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-{\bar{n}}$$\end{document} $ n-\overline{n}$ oscillation in Super-Kamiokande I. Phys. Rev. D 91 , 072006 (2015). 10.1103/PhysRevD.91.072006. arXiv:1109.4227 [hep-ex] 

  254. 254. J.E.T. Hewes, Searches for bound neutron?antineutron oscillation in liquid argon time projection chambers. PhD thesis, Manchester U (2017). 10.2172/1426674. http://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2017-27.pdf 

  255. 255. Barr GD Gaisser TK Lipari P Robbins S Stanev T A three-dimensional calculation of atmospheric neutrinos Phys. Rev. D 2004 70 023006 10.1103/PhysRevD.70.023006 

  256. 256. V.C.N. Meddage, Liquid argon time projection chamber calibration using cosmogenic muons, and measurement of neutrino induced charged kaon production in argon in the charged current mode (MicroBooNE experiment). PhD thesis, Kansas State U (2019) 

  257. 257. A. Bueno, A.J. Melgarejo, S. Navas, Z.D. ai, Y. Ge, M. Laffranchi, A.M. Meregaglia, A. Rubbia, Nucleon decay searches with large liquid Argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds. J. High Energy Phys. 2007 (04), 041 (2007). http://stacks.iop.org/1126-6708/2007/i=04/a=041 

  258. 258. Klinger J Kudryavtsev VA Richardson M Spooner NJC Muon-induced background to proton decay in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow K^+ \nu $$\end{document} $ p\rightarrow K^{+}\nu $ decay channel with large underground liquid argon TPC detectors Phys. Lett. B 2015 746 44 47 10.1016/j.physletb.2015.04.054 

  259. 259. Bugg DV Kaon-nucleon total cross sections from 0.6 to 2.65?GeV/c Phys. Rev. 1968 168 1466 1475 10.1103/PhysRev.168.1466 

  260. 260. Friedman E \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{+}$$\end{document} $ K^{+}$ nucleus reaction and total cross-sections: new analysis of transmission experiments Phys. Rev. C 1997 55 1304 1311 10.1103/PhysRevC.55.1304 

  261. 261. MINERvA Collaboration, C.M. Marshall et?al., Measurement of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{+}$$\end{document} $ K^{+}$ production in charged-current \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\mu }$$\end{document} $ \nu _{\mu }$ interactions. Phys. Rev. D 94 (1), 012002 (2016). 10.1103/PhysRevD.94.012002. arXiv:1604.03920 [hep-ex] 

  262. 262. ArgoNeuT Collaboration, R.?Acciarri et?al., A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. JINST 8 , P08005 (2013). 10.1088/1748-0221/8/08/P08005. arXiv:1306.1712 [physics.ins-det] 

  263. 263. A.?Hocker et?al., TMVA-toolkit for multivariate data analysis. arXiv:physics/0703039 [physics.data-an] 

  264. 264. Barr GD Gaisser TK Robbins S Stanev T Uncertainties in atmospheric neutrino fluxes Phys. Rev. D 2006 74 094009 10.1103/PhysRevD.74.094009 

  265. 265. Mahn K Marshall C Wilkinson C Progress in measurements of 0.1?10?GeV neutrino-nucleus scattering and anticipated results from future experiments Ann. Rev. Nucl. Part. Sci. 2018 68 105 129 10.1146/annurev-nucl-101917-020930 

  266. 266. Frejus Collaboration, C.?Berger et?al., Lifetime limits on (B-L) violating nucleon decay and dinucleon decay modes from the Frejus experiment. Phys. Lett. B 269 , 227?233 (1991). 10.1016/0370-2693(91)91479-F 

  267. 267. Golubeva ES Barrow JL Ladd CG Model of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{n}}}$$\end{document} $ \overline{n}$ annihilation in experimental searches for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{n}}}$$\end{document} $ \overline{n}$ transformations Phys. Rev. D 2019 99 3 035002 10.1103/PhysRevD.99.035002 

  268. 268. Barrow JL Golubeva ES Paryev E Richard J-M Progress and simulations for intranuclear neutron-antineutron transformations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{40}_{18} Ar$$\end{document} $ _{18}^{40}Ar$ Phys. Rev. D 2020 101 3 036008 10.1103/PhysRevD.101.036008 

  269. 269. Friedman E Gal A Realistic calculations of nuclear disappearance lifetimes induced by n anti-n oscillations Phys. Rev. D 2008 78 016002 10.1103/PhysRevD.78.016002 

  270. 270. DONUT Collaboration, K.?Kodama et?al., Observation of tau neutrino interactions. Phys. Lett. B 504 , 218?224 (2001). 10.1016/S0370-2693(01)00307-0. arXiv:hep-ex/0012035 

  271. 271. DONuT Collaboration, K.?Kodama et?al., Final tau-neutrino results from the DONuT experiment. Phys. Rev. D 78 , 052002 (2008). 10.1103/PhysRevD.78.052002. arXiv:0711.0728 [hep-ex] 

  272. 272. OPERA Collaboration, M.?Guler et?al., OPERA: an appearance experiment to search for nu/mu?nu/tau oscillations in the CNGS beam. Experimental proposal 

  273. 273. OPERA Collaboration, N.?Agafonova et?al., Final results of the OPERA experiment on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _\tau $$\end{document} $ \nu _{\tau }$ appearance in the CNGS neutrino beam. Phys. Rev. Lett. 120 (21), 211801 (2018). 10.1103/PhysRevLett.121.139901. 10.1103/PhysRevLett.120.211801. arXiv:1804.04912 [hep-ex] [Erratum: Phys. Rev. Lett. 121 (13), 139901 (2018)] 

  274. 274. Super-Kamiokande Collaboration, K.?Abe et?al., Evidence for the appearance of atmospheric tau neutrinos in Super-Kamiokande. Phys. Rev. Lett. 110 (18), 181802 (2013). 10.1103/PhysRevLett.110.181802. arXiv:1206.0328 [hep-ex] 

  275. 275. Super-Kamiokande Collaboration, Z.?Li et?al., Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande. Phys. Rev. D 98 (5), 052006 (2018). 10.1103/PhysRevD.98.052006. arXiv:1711.09436 [hep-ex] 

  276. 276. IceCube Collaboration, M.G. Aartsen et?al., Measurement of atmospheric tau neutrino appearance with IceCube DeepCore. Phys. Rev. D 99 (3), 032007 (2019). 10.1103/PhysRevD.99.032007. arXiv:1901.05366 [hep-ex] 

  277. 277. P. Machado, H. Schulz, J. Turner, Tau neutrinos at DUNE: new strategies, new opportunities. Phys. Rev. D 102 (5), 053010 (2020). 10.1103/PhysRevD.102.053010. arXiv:2007.00015 [hep-ph] 

  278. 278. Bakhti P Farzan Y Rajaee M Secret interactions of neutrinos with light gauge boson at the DUNE near detector Phys. Rev. D 2019 99 5 055019 10.1103/PhysRevD.99.055019 

  279. 279. Conrad J de Gouvea A Shalgar S Spitz J Atmospheric tau neutrinos in a multi-kiloton liquid argon detector Phys. Rev. D 2010 82 093012 10.1103/PhysRevD.82.093012 

  280. 280. A. De Gouvea, K.J. Kelly, G.V. Stenico, P. Pasquini, Physics with beam tau-neutrino appearance at DUNE. Phys. Rev. D 100 (1), 016004 (2019). 10.1103/PhysRevD.100.016004. arXiv:1904.07265 [hep-ph] 

  281. 281. Ghoshal A Giarnetti A Meloni D On the role of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{\tau }$$\end{document} $ \nu _{\tau }$ appearance in DUNE in constraining standard neutrino physics and beyond JHEP 2019 12 126 10.1007/JHEP12(2019)126 

  282. 282. Dienes KR Dudas E Gherghetta T Neutrino oscillations without neutrino masses or heavy mass scales: a higher dimensional seesaw mechanism Nucl. Phys. B 1999 557 25 10.1016/S0550-3213(99)00377-6 

  283. 283. Arkani-Hamed N Dimopoulos S Dvali GR March-Russell J Neutrino masses from large extra dimensions Phys. Rev. D 2001 65 024032 10.1103/PhysRevD.65.024032 

  284. 284. Davoudiasl H Langacker P Perelstein M Constraints on large extra dimensions from neutrino oscillation experiments Phys. Rev. D 2002 65 105015 10.1103/PhysRevD.65.105015 

  285. 285. MINOS Collaboration, P.?Adamson et?al., Constraints on large extra dimensions from the MINOS experiment. Phys. Rev. D 94 (11), 111101 (2016). 10.1103/PhysRevD.94.111101. arXiv:1608.06964 [hep-ex] 

  286. 286. Balantekin AB de Gouvea A Kayser B Addressing the Majorana vs. Dirac question with neutrino decays Phys. Lett. B 2019 789 488 495 10.1016/j.physletb.2018.11.068 

  287. 287. P. Ballett, T. Boschi, S. Pascoli, Heavy neutral leptons from low-scale seesaws at the DUNE near detector. JHEP 03 , 111 (2020). 10.1007/JHEP03(2020)111. arXiv:1905.00284 [hep3375 ph] 

  288. 288. Bernardi G Search for neutrino decay Phys. Lett. 1986 166B 479 483 10.1016/0370-2693(86)91602-3 

  289. 289. Bernardi G Further limits on heavy neutrino couplings Phys. Lett. B 1988 203 332 334 10.1016/0370-2693(88)90563-1 

  290. 290. E949 Collaboration, A.V. Artamonov et?al., Search for heavy neutrinos in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^+\rightarrow \mu ^+\nu _H$$\end{document} $ K^{+}\rightarrow \mu ^{+}\nu _{H}$ decays. Phys. Rev. D 91 (5), 052001 (2015). 10.1103/PhysRevD.91.059903. 10.1103/PhysRevD.91.052001. arXiv:1411.3963 [hep-ex] [Erratum: Phys. Rev. D 91 (5), 059903 (2015)] 

  291. 291. Britton DI Measurement of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^+ \rightarrow e^+ \nu $$\end{document} $ \pi ^{+}\rightarrow e^{+}\nu $ neutrino branching ratio Phys. Rev. Lett. 1992 68 3000 3003 10.1103/PhysRevLett.68.3000 10045582 

  292. 292. Britton DI Improved search for massive neutrinos in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^+ \rightarrow e^+ \nu $$\end{document} $ \pi ^{+}\rightarrow e^{+}\nu $ decay Phys. Rev. D 1992 46 R885 R887 10.1103/PhysRevD.46.R885 

  293. 293. PIENU Collaboration, A.?Aguilar-Arevalo et?al., Improved search for heavy neutrinos in the decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \rightarrow e\nu $$\end{document} $ \pi \rightarrow e\nu $ . Phys. Rev. D 97 (7), 072012 (2018). 10.1103/PhysRevD.97.072012. arXiv:1712.03275 [hep-ex] 

  294. 294. PIENU Collaboration, A. Aguilar-Arevalo et al., Search for heavy neutrinos in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \rightarrow \mu \nu $$\end{document} $ \pi \rightarrow \mu \nu $ decay. Phys. Lett. B 798 , 134980 (2019). 10.1016/j.physletb.2019.134980. arXiv:1904.03269 [hep-ex] 

  295. 295. CHARM II Collaboration, P.?Vilain et?al., Search for heavy isosinglet neutrinos. Phys. Lett. B 343 , 453?458 (1995). 10.1016/0370-2693(94)00440-I. 10.1016/0370-2693(94)01422-9. [Phys. Lett. B 351 , 387 (1995)] 

  296. 296. NuTeV, E815 Collaboration, A.?Vaitaitis et?al., Search for neutral heavy leptons in a high-energy neutrino beam. Phys. Rev. Lett. 83 , 4943?4946 (1999). 10.1103/PhysRevLett.83.4943. arXiv:hep-ex/9908011 

  297. 297. DELPHI Collaboration, P.?Abreu et?al., Search for neutral heavy leptons produced in Z decays. Z. Phys. C 74 , 57?71 (1997). 10.1007/s002880050370 [Erratum: Z. Phys. C 75 , 580 (1997)] 

  298. 298. T2K Collaboration, K. Abe et al., Search for heavy neutrinos with the T2K near detector ND280. Phys. Rev. D 100 (5), 052006 (2019). 10.1103/PhysRevD.100.052006. arXiv:1902.07598 [hep-ex] 

  299. 299. Ballett P Pascoli S Ross-Lonergan M MeV-scale sterile neutrino decays at the Fermilab Short-Baseline Neutrino program JHEP 2017 04 102 10.1007/JHEP04(2017)102 

  300. 300. Alekhin S A facility to search for hidden particles at the CERN SPS: the SHiP physics case Rept. Prog. Phys. 2016 79 12 124201 10.1088/0034-4885/79/12/124201 

  301. 301. Drewes M Hajer J Klaric J Lanfranchi G NA62 sensitivity to heavy neutral leptons in the low scale seesaw model JHEP 2018 07 105 10.1007/JHEP07(2018)105 

  302. 302. D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. Rept. Prog. Phys. 82 (11), 116201 (2019). 10.1088/1361-6633/ab28d6. arXiv:1806.07396 [hep-ph] 

  303. 303. Kling F Trojanowski S Heavy neutral leptons at FASER Phys. Rev. D 2018 97 9 095016 10.1103/PhysRevD.97.095016 

  304. 304. Rott C In S Kumar J Yaylali D Directional searches at DUNE for sub-GeV monoenergetic neutrinos arising from dark matter annihilation in the sun JCAP 2017 1701 01 016 10.1088/1475-7516/2017/01/016 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로