최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal for numerical methods in engineering, v.122 no.22, 2021년, pp.6455 - 6475
Lee, Chang‐Ock (Department of Mathematical Sciences, KAIST, Daejeon, Korea) , Park, Jongho (Natural Science Research Institute, KAIST, Daejeon, Korea)
AbstractWe propose a novel dual‐primal finite element tearing and interconnecting method for nonlinear variational inequalities. The proposed method is based on a particular Fenchel–Rockafellar dual formulation of the target problem, which yields linear local problems despite the nonline...
Farhat C , Roux FX . A method of finite element tearing and interconnecting and its parallel solution algorithm . Int J Numer Methods Eng . 1991 ; 32 ( 6 ): 1205 ‐ 1227 .
Farhat C , Mandel J , Roux FX . Optimal convergence properties of the FETI domain decomposition method . Comput Methods Appl Mech Eng . 1994 ; 115 ( 3‐4 ): 365 ‐ 385 .
Farhat C , Lesoinne M , Pierson K . A scalable dual‐primal domain decomposition method . Numer Linear Algebra Appl . 2000 ; 7 ( 7‐8 ): 687 ‐ 714 .
Farhat C , Lesoinne M , LeTallec P , Pierson K , Rixen D . FETI‐DP: a dual–primal unified FETI method–part I: a faster alternative to the two‐level FETI method . Int J Numer Methods Eng . 2001 ; 50 ( 7 ): 1523 ‐ 1544 .
Duvaut G , Lions JL . Inequalities in Mechanics and Physics . Springer ; 1976 .
Dureisseix D , Farhat C . A numerically scalable domain decomposition method for the solution of frictionless contact problems . Int J Numer Methods Eng . 2001 ; 50 ( 12 ): 2643 ‐ 2666 .
Avery P , Rebel G , Lesoinne M , Farhat C . A numerically scalable dual‐primal substructuring method for the solution of contact problems—part I: the frictionless case . Comput Methods Appl Mech Eng . 2004 ; 193 ( 23‐26 ): 2403 ‐ 2426 .
Dostál Z , Horák D . Scalable FETI with optimal dual penalty for a variational inequality . Numer Linear Algebra Appl . 2004 ; 11 ( 5‐6 ): 455 ‐ 472 .
Dostál Z , Horák D , Stefanica D . A scalable FETI‐DP algorithm for a coercive variational inequality . Appl Numer Math . 2005 ; 54 ( 3‐4 ): 378 ‐ 390 .
Dostál Z , Horák D , Stefanica D . A scalable FETI‐DP algorithm for a semi‐coercive variational inequality . Comput Methods Appl Mech Eng . 2007 ; 196 ( 8 ): 1369 ‐ 1379 .
Dostál Z , Horák D . Theoretically supported scalable FETI for numerical solution of variational inequalities . SIAM J Numer Anal . 2007 ; 45 ( 2 ): 500 ‐ 513 .
Avery P , Farhat C . The FETI family of domain decomposition methods for inequality‐constrained quadratic programming: application to contact problems with conforming and nonconforming interfaces . Comput Methods Appl Mech Eng . 2009 ; 198 ( 21‐26 ): 1673 ‐ 1683 .
Jarošová M , Klawonn A , Rheinbach O . Projector preconditioning and transformation of basis in FETI‐DP algorithms for contact problems . Math Comput Simul . 2012 ; 82 ( 10 ): 1894 ‐ 1907 .
Rockafellar RT . Convex Analysis . Princeton University Press ; 2015 .
Dostál Z , Horák D , Kučera R . Total FETI–an easier implementable variant of the FETI method for numerical solution of elliptic PDE . Commun Numer Methods Eng . 2006 ; 22 ( 12 ): 1155 ‐ 1162 .
Dostál Z , Kozubek T , Vondrák V , Brzobohatỳ T , Markopoulos A . Scalable TFETI algorithm for the solution of multibody contact problems of elasticity . Int J Numer Methods Eng . 2010 ; 82 ( 11 ): 1384 ‐ 1405 .
Dostál Z , Kozubek T , Markopoulos A , Brzobohatỳ T , Vondrák V , Horyl P . A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction . Comput Methods Appl Mech Eng . 2012 ; 205 : 110 ‐ 120 .
Ciarlet PG . The Finite Element Method for Elliptic Problems . SIAM ; 2002 .
Attouch H , Briceño‐Arias LM , Combettes PL . A strongly convergent primal–dual method for nonoverlapping domain decomposition . Numer Math . 2016 ; 133 ( 3 ): 443 ‐ 470 .
Klawonn A , Lanser M , Rheinbach O . Nonlinear FETI‐DP and BDDC methods . SIAM J Sci Comput . 2014 ; 36 ( 2 ): A737 ‐ A765 .
Klawonn A , Lanser M , Rheinbach O . Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations . SIAM J Sci Comput . 2015 ; 37 ( 6 ): C667 ‐ C696 .
Klawonn A , Lanser M , Rheinbach O , Uran M . Nonlinear FETI‐DP and BDDC methods: a unified framework and parallel results . SIAM J Sci Comput . 2017 ; 39 ( 6 ): C417 ‐ C451 .
Lee CO , Park EH , Park J . A finite element approach for the dual Rudin–Osher–Fatemi model and its nonoverlapping domain decomposition methods . SIAM J Sci Comput . 2019 ; 41 ( 2 ): B205 ‐ B228 .
Lee CO , Park J . A finite element nonoverlapping domain decomposition method with Lagrange multipliers for the dual total variation minimizations . J Sci Comput . 2019 ; 81 ( 3 ): 2331 ‐ 2355 .
Hintermüller M , Ito K , Kunisch K . The primal‐dual active set strategy as a semismooth Newton method . SIAM J Optim . 2002 ; 13 ( 3 ): 865 ‐ 888 .
Lee J . Two domain decomposition methods for auxiliary linear problems of a multibody elliptic variational inequality . SIAM J Sci Comput . 2013 ; 35 ( 3 ): A1350 ‐ A1375 .
Badea L , Krause R . One‐and two‐level Schwarz methods for variational inequalities of the second kind and their application to frictional contact . Numer Math . 2012 ; 120 ( 4 ): 573 ‐ 599 .
Park J . Additive Schwarz methods for convex optimization as gradient methods . SIAM J Numer Anal . 2020 ; 58 ( 3 ): 1495 ‐ 1530 .
Dostál Z , Schoberl J . Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination . Comput Optim Appl . 2005 ; 30 ( 1 ): 23 ‐ 43 .
Nesterov Y . Gradient methods for minimizing composite functions . Math Program . 2013 ; 140 ( 1 ): 125 ‐ 161 .
Chambolle A , Pock T . An introduction to continuous optimization for imaging . Acta Numer . 2016 ; 25 : 161 ‐ 319 .
Calatroni L , Chambolle A . Backtracking strategies for accelerated descent methods with smooth composite objectives . SIAM J Optim . 2019 ; 29 ( 3 ): 1772 ‐ 1798 .
Beck A , Teboulle M . A fast iterative shrinkage‐thresholding algorithm for linear inverse problems . SIAM J Imaging Sci . 2009 ; 2 ( 1 ): 183 ‐ 202 .
Mandel J , Tezaur R . On the convergence of a dual‐primal substructuring method . Numer Math . 2001 ; 88 ( 3 ): 543 ‐ 558 .
Lee CO , Nam C , Park J . Domain decomposition methods using dual conversion for the total variation minimization with L1 fidelity term . J Sci Comput . 2019 ; 78 ( 2 ): 951 ‐ 970 .
O'Donoghue B , Candes E . Adaptive restart for accelerated gradient schemes . Found Comput Math . 2015 ; 15 ( 3 ): 715 ‐ 732 .
Toselli A , Widlund O . Domain Decomposition Methods—Algorithms and Theory . Springer ; 2005 .
Lee CO , Park EH . A dual iterative substructuring method with a penalty term . Numer Math . 2009 ; 112 ( 1 ): 89 ‐ 113 .
Brenner SC , Sung LY . Lower bounds for nonoverlapping domain decomposition preconditioners in two dimensions . Math Comput . 2000 ; 69 ( 232 ): 1319 ‐ 1339 .
Fried I . Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices . Int J Solids Struct . 1973 ; 9 ( 9 ): 1013 ‐ 1034 .
Yamagishi M , Yamada I . Over‐relaxation of the fast iterative shrinkage‐thresholding algorithm with variable stepsize . Inverse Probl . 2011 ; 27 ( 10 ): 105008 .
Dostál Z , Domorádová M , Sadowská M . Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints . Comput Optim Appl . 2011 ; 48 ( 1 ): 23 ‐ 44 .
Klawonn A , Widlund OB , Dryja M . Dual‐primal FETI methods for three‐dimensional elliptic problems with heterogeneous coefficients . SIAM J Numer Anal . 2002 ; 40 ( 1 ): 159 ‐ 179 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.