$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A dual‐primal finite element tearing and interconnecting method for nonlinear variational inequalities utilizing linear local problems

International journal for numerical methods in engineering, v.122 no.22, 2021년, pp.6455 - 6475  

Lee, Chang‐Ock (Department of Mathematical Sciences, KAIST, Daejeon, Korea) ,  Park, Jongho (Natural Science Research Institute, KAIST, Daejeon, Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractWe propose a novel dual‐primal finite element tearing and interconnecting method for nonlinear variational inequalities. The proposed method is based on a particular Fenchel–Rockafellar dual formulation of the target problem, which yields linear local problems despite the nonline...

Keyword

참고문헌 (44)

  1. Farhat C , Roux FX . A method of finite element tearing and interconnecting and its parallel solution algorithm . Int J Numer Methods Eng . 1991 ; 32 ( 6 ): 1205 ‐ 1227 . 

  2. Farhat C , Mandel J , Roux FX . Optimal convergence properties of the FETI domain decomposition method . Comput Methods Appl Mech Eng . 1994 ; 115 ( 3‐4 ): 365 ‐ 385 . 

  3. Farhat C , Lesoinne M , Pierson K . A scalable dual‐primal domain decomposition method . Numer Linear Algebra Appl . 2000 ; 7 ( 7‐8 ): 687 ‐ 714 . 

  4. Farhat C , Lesoinne M , LeTallec P , Pierson K , Rixen D . FETI‐DP: a dual–primal unified FETI method–part I: a faster alternative to the two‐level FETI method . Int J Numer Methods Eng . 2001 ; 50 ( 7 ): 1523 ‐ 1544 . 

  5. Duvaut G , Lions JL . Inequalities in Mechanics and Physics . Springer ; 1976 . 

  6. Dureisseix D , Farhat C . A numerically scalable domain decomposition method for the solution of frictionless contact problems . Int J Numer Methods Eng . 2001 ; 50 ( 12 ): 2643 ‐ 2666 . 

  7. Avery P , Rebel G , Lesoinne M , Farhat C . A numerically scalable dual‐primal substructuring method for the solution of contact problems—part I: the frictionless case . Comput Methods Appl Mech Eng . 2004 ; 193 ( 23‐26 ): 2403 ‐ 2426 . 

  8. Dostál Z , Horák D . Scalable FETI with optimal dual penalty for a variational inequality . Numer Linear Algebra Appl . 2004 ; 11 ( 5‐6 ): 455 ‐ 472 . 

  9. Dostál Z , Horák D , Stefanica D . A scalable FETI‐DP algorithm for a coercive variational inequality . Appl Numer Math . 2005 ; 54 ( 3‐4 ): 378 ‐ 390 . 

  10. Dostál Z , Horák D , Stefanica D . A scalable FETI‐DP algorithm for a semi‐coercive variational inequality . Comput Methods Appl Mech Eng . 2007 ; 196 ( 8 ): 1369 ‐ 1379 . 

  11. Dostál Z , Horák D . Theoretically supported scalable FETI for numerical solution of variational inequalities . SIAM J Numer Anal . 2007 ; 45 ( 2 ): 500 ‐ 513 . 

  12. Avery P , Farhat C . The FETI family of domain decomposition methods for inequality‐constrained quadratic programming: application to contact problems with conforming and nonconforming interfaces . Comput Methods Appl Mech Eng . 2009 ; 198 ( 21‐26 ): 1673 ‐ 1683 . 

  13. Jarošová M , Klawonn A , Rheinbach O . Projector preconditioning and transformation of basis in FETI‐DP algorithms for contact problems . Math Comput Simul . 2012 ; 82 ( 10 ): 1894 ‐ 1907 . 

  14. Rockafellar RT . Convex Analysis . Princeton University Press ; 2015 . 

  15. Dostál Z , Horák D , Kučera R . Total FETI–an easier implementable variant of the FETI method for numerical solution of elliptic PDE . Commun Numer Methods Eng . 2006 ; 22 ( 12 ): 1155 ‐ 1162 . 

  16. Dostál Z , Kozubek T , Vondrák V , Brzobohatỳ T , Markopoulos A . Scalable TFETI algorithm for the solution of multibody contact problems of elasticity . Int J Numer Methods Eng . 2010 ; 82 ( 11 ): 1384 ‐ 1405 . 

  17. Dostál Z , Kozubek T , Markopoulos A , Brzobohatỳ T , Vondrák V , Horyl P . A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction . Comput Methods Appl Mech Eng . 2012 ; 205 : 110 ‐ 120 . 

  18. Ciarlet PG . The Finite Element Method for Elliptic Problems . SIAM ; 2002 . 

  19. Attouch H , Briceño‐Arias LM , Combettes PL . A strongly convergent primal–dual method for nonoverlapping domain decomposition . Numer Math . 2016 ; 133 ( 3 ): 443 ‐ 470 . 

  20. Klawonn A , Lanser M , Rheinbach O . Nonlinear FETI‐DP and BDDC methods . SIAM J Sci Comput . 2014 ; 36 ( 2 ): A737 ‐ A765 . 

  21. Klawonn A , Lanser M , Rheinbach O . Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations . SIAM J Sci Comput . 2015 ; 37 ( 6 ): C667 ‐ C696 . 

  22. Klawonn A , Lanser M , Rheinbach O , Uran M . Nonlinear FETI‐DP and BDDC methods: a unified framework and parallel results . SIAM J Sci Comput . 2017 ; 39 ( 6 ): C417 ‐ C451 . 

  23. Lee CO , Park EH , Park J . A finite element approach for the dual Rudin–Osher–Fatemi model and its nonoverlapping domain decomposition methods . SIAM J Sci Comput . 2019 ; 41 ( 2 ): B205 ‐ B228 . 

  24. Lee CO , Park J . A finite element nonoverlapping domain decomposition method with Lagrange multipliers for the dual total variation minimizations . J Sci Comput . 2019 ; 81 ( 3 ): 2331 ‐ 2355 . 

  25. Hintermüller M , Ito K , Kunisch K . The primal‐dual active set strategy as a semismooth Newton method . SIAM J Optim . 2002 ; 13 ( 3 ): 865 ‐ 888 . 

  26. Lee J . Two domain decomposition methods for auxiliary linear problems of a multibody elliptic variational inequality . SIAM J Sci Comput . 2013 ; 35 ( 3 ): A1350 ‐ A1375 . 

  27. Badea L , Krause R . One‐and two‐level Schwarz methods for variational inequalities of the second kind and their application to frictional contact . Numer Math . 2012 ; 120 ( 4 ): 573 ‐ 599 . 

  28. Park J . Additive Schwarz methods for convex optimization as gradient methods . SIAM J Numer Anal . 2020 ; 58 ( 3 ): 1495 ‐ 1530 . 

  29. Dostál Z , Schoberl J . Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination . Comput Optim Appl . 2005 ; 30 ( 1 ): 23 ‐ 43 . 

  30. Nesterov Y . Gradient methods for minimizing composite functions . Math Program . 2013 ; 140 ( 1 ): 125 ‐ 161 . 

  31. Chambolle A , Pock T . An introduction to continuous optimization for imaging . Acta Numer . 2016 ; 25 : 161 ‐ 319 . 

  32. Calatroni L , Chambolle A . Backtracking strategies for accelerated descent methods with smooth composite objectives . SIAM J Optim . 2019 ; 29 ( 3 ): 1772 ‐ 1798 . 

  33. Beck A , Teboulle M . A fast iterative shrinkage‐thresholding algorithm for linear inverse problems . SIAM J Imaging Sci . 2009 ; 2 ( 1 ): 183 ‐ 202 . 

  34. Mandel J , Tezaur R . On the convergence of a dual‐primal substructuring method . Numer Math . 2001 ; 88 ( 3 ): 543 ‐ 558 . 

  35. Lee CO , Nam C , Park J . Domain decomposition methods using dual conversion for the total variation minimization with L1 fidelity term . J Sci Comput . 2019 ; 78 ( 2 ): 951 ‐ 970 . 

  36. O'Donoghue B , Candes E . Adaptive restart for accelerated gradient schemes . Found Comput Math . 2015 ; 15 ( 3 ): 715 ‐ 732 . 

  37. Toselli A , Widlund O . Domain Decomposition Methods—Algorithms and Theory . Springer ; 2005 . 

  38. Lee CO , Park EH . A dual iterative substructuring method with a penalty term . Numer Math . 2009 ; 112 ( 1 ): 89 ‐ 113 . 

  39. Brenner SC , Sung LY . Lower bounds for nonoverlapping domain decomposition preconditioners in two dimensions . Math Comput . 2000 ; 69 ( 232 ): 1319 ‐ 1339 . 

  40. Fried I . Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices . Int J Solids Struct . 1973 ; 9 ( 9 ): 1013 ‐ 1034 . 

  41. Lee CO , Park EH , Park J . Corrigendum to "A dual iterative substructuring method with a small penalty parameter", [J. Korean Math. Soc. 54 (2017), No. 2, 461–477] . J Korean Math Soc . 2021 ; 58 ( 3 ): 791 ‐ 797 . 

  42. Yamagishi M , Yamada I . Over‐relaxation of the fast iterative shrinkage‐thresholding algorithm with variable stepsize . Inverse Probl . 2011 ; 27 ( 10 ): 105008 . 

  43. Dostál Z , Domorádová M , Sadowská M . Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints . Comput Optim Appl . 2011 ; 48 ( 1 ): 23 ‐ 44 . 

  44. Klawonn A , Widlund OB , Dryja M . Dual‐primal FETI methods for three‐dimensional elliptic problems with heterogeneous coefficients . SIAM J Numer Anal . 2002 ; 40 ( 1 ): 159 ‐ 179 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로