$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Enhanced Performance of Carbon Molecular Sieve Membranes Incorporating Zeolite Nanocrystals for Air Separation 원문보기

Membranes, v.11 no.7, 2021년, pp.489 -   

Chuah, Chong Yang (Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Singapore 637141, Singapore) ,  Goh, Kunli (chongyang.chuah@ntu.edu.sg (C.Y.C.)) ,  Bae, Tae-Hyun (gohkunli@ntu.edu.sg (K.G.))

Abstract AI-Helper 아이콘AI-Helper

Three different zeolite nanocrystals (SAPO-34, PS-MFI and ETS-10) were incorporated into the polymer matrix (Matrimid® 5218) as polymer precursors, with the aim of fabricating mixed-matrix carbon molecular sieve membranes (CMSMs). These membranes are investigated for their potential for air sepa...

Keyword

참고문헌 (60)

  1. 1. Fernández-Barquín A. Casado-Coterillo C. Valencia S. Irabien A. Mixed matrix membranes for O 2 /N 2 separation: The influence of temperature Membranes 2016 6 28 10.3390/membranes6020028 27196937 

  2. 2. Hoek E.M.V. Tarabara V.V. Encyclopedia of Membrane Science and Technology Wiley Online Library Hoboken, NJ, USA 2013 Volume 3 

  3. 3. Chong K. Lai S. Thiam H. Teoh H. Heng S. Recent progress of oxygen/nitrogen separation using membrane technology J. Eng. Sci. Technol. 2016 11 1016 1030 

  4. 4. Stafford T.M. Indoor air quality and academic performance J. Environ. Econ. Manag. 2015 70 34 50 10.1016/j.jeem.2014.11.002 

  5. 5. Bazzarelli F. Giorno L. Piacentini E. Encyclopedia of Membranes Springer Berlin/Heidelberg, Germany 2016 

  6. 6. Samarasinghe S.A.S.C. Chuah C.Y. Karahan H.E. Sethunga G. Bae T.-H. Enhanced O 2 /N 2 Separation of Mixed-Matrix Membrane Filled with Pluronic-Compatibilized Cobalt Phthalocyanine Particles Membranes 2020 10 75 10.3390/membranes10040075 32325765 

  7. 7. Smith A. Klosek J. A review of air separation technologies and their integration with energy conversion processes Fuel Process. Technol. 2001 70 115 134 10.1016/S0378-3820(01)00131-X 

  8. 8. Chuah C.Y. Lee Y. Bae T.-H. Potential of adsorbents and membranes for SF 6 capture and recovery: A review Chem. Eng. J. 2020 404 126577 10.1016/j.cej.2020.126577 

  9. 9. Murali R.S. Sankarshana T. Sridhar S. Air separation by polymer-based membrane technology Sep. Purif. Rev. 2013 42 130 186 10.1080/15422119.2012.686000 

  10. 10. Chuah C.Y. Goh K. Yang Y. Gong H. Li W. Karahan H.E. Guiver M.D. Wang R. Bae T.-H. Harnessing filler materials for enhancing biogas separation membranes Chem. Rev. 2018 118 8655 8769 10.1021/acs.chemrev.8b00091 30136837 

  11. 11. Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes J. Membr. Sci. 1991 62 165 185 10.1016/0376-7388(91)80060-J 

  12. 12. Robeson L.M. The upper bound revisited J. Membr. Sci. 2008 320 390 400 10.1016/j.memsci.2008.04.030 

  13. 13. Samarasinghe S. Chuah C.Y. Li W. Sethunga G. Wang R. Bae T.-H. Incorporation of Co III acetylacetonate and SNW-1 nanoparticles to tailor O 2 /N 2 separation performance of mixed-matrix membrane Sep. Purif. Technol. 2019 223 133 141 10.1016/j.seppur.2019.04.075 

  14. 14. Li W. Goh K. Chuah C.Y. Bae T.-H. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO 2 permeability enhancements J. Membr. Sci. 2019 588 117220 10.1016/j.memsci.2019.117220 

  15. 15. Li W. Chuah C.Y. Bae T.-H. Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O 2 /N 2 Separation Membr. J. 2020 30 260 268 10.14579/MEMBRANE_JOURNAL.2020.30.4.260 

  16. 16. Chuah C.Y. Lee J. Bao Y. Song J. Bae T.-H. High-performance porous carbon-zeolite mixed-matrix membranes for CO 2 /N 2 separation J. Membr. Sci. 2021 622 119031 10.1016/j.memsci.2020.119031 

  17. 17. Chuah C.Y. Lee J. Song J. Bae T.-H. Carbon Molecular Sieve Membranes Comprising Graphene Oxides and Porous Carbon for CO 2 /N 2 Separation Membranes 2021 11 284 10.3390/membranes11040284 33921517 

  18. 18. Ismail A.F. David L. A review on the latest development of carbon membranes for gas separation J. Membr. Sci. 2001 193 1 18 10.1016/S0376-7388(01)00510-5 

  19. 19. Salleh W.N.W. Ismail A.F. Matsuura T. Abdullah M.S. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review Sep. Purif. Rev. 2011 40 261 311 10.1080/15422119.2011.555648 

  20. 20. Saufi S. Ismail A. Fabrication of carbon membranes for gas separation––A review Carbon 2004 42 241 259 10.1016/j.carbon.2003.10.022 

  21. 21. Li W. Chuah C.Y. Kwon S. Goh K. Wang R. Na K. Bae T.-H. Nanosizing zeolite 5A fillers in mixed-matrix carbon molecular sieve membranes to improve gas separation performance Chem. Eng. J. Adv. 2020 2 100016 10.1016/j.ceja.2020.100016 

  22. 22. Gong H. Chuah C.Y. Yang Y. Bae T.-H. High performance composite membranes comprising Zn(pyrz) 2 (SiF 6 ) nanocrystals for CO 2 /CH 4 separation J. Ind. Eng. Chem. 2018 60 279 285 10.1016/j.jiec.2017.11.014 

  23. 23. Chuah C.Y. Samarasinghe S. Li W. Goh K. Bae T.-H. Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation Membranes 2020 10 74 10.3390/membranes10040074 

  24. 24. Yang Y. Goh K. Wang R. Bae T.-H. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets Chem. Commun. 2017 53 4254 4257 10.1039/C7CC00295E 28361151 

  25. 25. Chuah C.Y. Bae T.-H. Incorporation of Cu 3 BTC 2 nanocrystals to increase the permeability of polymeric membranes in O 2 /N 2 separation BMC Chem. Eng. 2019 1 2 10.1186/s42480-019-0002-z 

  26. 26. Zhang B. Wu Y. Lu Y. Wang T. Jian X. Qiu J. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide J. Membr. Sci. 2015 474 114 121 10.1016/j.memsci.2014.09.054 

  27. 27. Li M. Wang Y. Bai L. Chang N. Nan G. Hu D. Zhang Y. Wei W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process Appl. Catal. A Gen. 2017 531 203 211 10.1016/j.apcata.2016.11.005 

  28. 28. Cheng C.-H. Bae T.-H. McCool B.A. Chance R.R. Nair S. Jones C.W. Functionalization of the internal surface of pure-silica MFI zeolite with aliphatic alcohols J. Phys. Chem. C 2008 112 3543 3551 10.1021/jp709867k 

  29. 29. KerryáThomas J. Synthesis of microporous titanosilicates ETS-10 and ETS-4 using solid TiO 2 as the source of titanium Chem. Commun. 1996 1435 1436 10.1039/CC9960001433 

  30. 30. Chuah C.Y. Yang Y. Bae T.-H. Hierarchically porous polymers containing triphenylamine for enhanced SF 6 separation Micropor. Mesopor. Mater. 2018 272 232 240 10.1016/j.micromeso.2018.06.039 

  31. 31. Mason J.A. Sumida K. Herm Z.R. Krishna R. Long J.R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption Energy Environ. Sci. 2011 4 3030 3040 10.1039/c1ee01720a 

  32. 32. Mathias P.M. Kumar R. Moyer J.D. Schork J.M. Srinivasan S.R. Auvil S.R. Talu O. Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite Ind. Eng. Chem. Res. 1996 35 2477 2483 10.1021/ie950291y 

  33. 33. Yang Y. Goh K. Chuah C.Y. Karahan H.E. Birer Ö. Bae T.-H. Sub-Ångström-level engineering of ultramicroporous carbons for enhanced sulfur hexafluoride capture Carbon 2019 155 56 64 10.1016/j.carbon.2019.08.034 

  34. 34. Ma Y. Jue M.L. Zhang F. Mathias R. Jang H.Y. Lively R.P. Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes Angew. Chem. 2019 131 13393 13399 10.1002/ange.201903105 

  35. 35. Kim C. Cho H.S. Chang S. Cho S.J. Choi M. An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation Energy Environ. Sci. 2016 9 1803 1811 10.1039/C6EE00601A 

  36. 36. Dargahi M. Kazemian H. Soltanieh M. Hosseinpour M. Rohani S. High temperature synthesis of SAPO-34: Applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters Powder Technol. 2012 217 223 230 10.1016/j.powtec.2011.10.030 

  37. 37. Vinoth Kumar R. Pugazhenthi G. Removal of chromium from synthetic wastewater using MFI zeolite membrane supported on inexpensive tubular ceramic substrate J. Water Reuse Desal. 2017 7 365 377 10.2166/wrd.2016.096 

  38. 38. Thommes M. Kaneko K. Neimark A.V. Olivier J.P. Rodriguez-Reinoso F. Rouquerol J. Sing K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015 87 1051 1069 10.1515/pac-2014-1117 

  39. 39. Yang Y. Chuah C.Y. Bae T.-H. Polyamine-appended porous organic polymers for efficient post-combustion CO 2 capture Chem. Eng. J. 2019 358 1227 1234 10.1016/j.cej.2018.10.122 

  40. 40. Bae T.-H. Hudson M.R. Mason J.A. Queen W.L. Dutton J.J. Sumida K. Micklash K.J. Kaye S.S. Brown C.M. Long J.R. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture Energy Environ. Sci. 2013 6 128 138 10.1039/C2EE23337A 

  41. 41. Li J.-R. Kuppler R.J. Zhou H.-C. Selective gas adsorption and separation in metal–organic frameworks Chem. Soc. Rev. 2009 38 1477 1504 10.1039/b802426j 19384449 

  42. 42. Murray L.J. Dinca M. Yano J. Chavan S. Bordiga S. Brown C.M. Long J.R. Highly-selective and reversible O 2 binding in Cr 3 (1,3,5-benzenetricarboxylate) 2 J. Am. Chem. Soc. 2010 132 7856 7857 10.1021/ja1027925 20481535 

  43. 43. Bloch E.D. Murray L.J. Queen W.L. Chavan S. Maximoff S.N. Bigi J.P. Krishna R. Peterson V.K. Grandjean F. Long G.J. Selective binding of O 2 over N 2 in a redox–active metal–organic framework with open iron (II) coordination sites J. Am. Chem. Soc. 2011 133 14814 14822 10.1021/ja205976v 21830751 

  44. 44. Jaffe A. Ziebel M.E. Halat D.M. Biggins N. Murphy R.A. Chakarawet K. Reimer J.A. Long J.R. Selective, High-Temperature O 2 Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks J. Am. Chem. Soc. 2020 142 14627 14637 10.1021/jacs.0c06570 32786654 

  45. 45. Reed D.A. Xiao D.J. Jiang H.Z. Chakarawet K. Oktawiec J. Long J.R. Biomimetic O 2 adsorption in an iron metal–organic framework for air separation Chem. Sci. 2020 11 1698 1702 10.1039/C9SC06047B 34084391 

  46. 46. Goh P. Ismail A. Sanip S. Ng B. Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation Sep. Purif. Technol. 2011 81 243 264 10.1016/j.seppur.2011.07.042 

  47. 47. Gong H. Lee S.S. Bae T.-H. Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO 2 /CH 4 separation Micropor. Mesopor. Mater. 2017 237 82 89 10.1016/j.micromeso.2016.09.017 

  48. 48. Fuertes A. Nevskaia D. Centeno T. Carbon composite membranes from Matrimid ® and Kapton ® polyimides for gas separation Micropor. Mesopor. Mater. 1999 33 115 125 10.1016/S1387-1811(99)00129-8 

  49. 49. Wang D. Tian P. Yang M. Xu S. Fan D. Su X. Yang Y. Wang C. Liu Z. Synthesis of SAPO-34 with alkanolamines as novel templates and their application for CO 2 separation Micropor. Mesopor. Mater. 2014 194 8 14 10.1016/j.micromeso.2014.03.028 

  50. 50. Bao Z. Yu L. Dou T. Gong Y. Zhang Q. Ren Q. Lu X. Deng S. Adsorption equilibria of CO 2 , CH 4 , N 2 , O 2 , and Ar on high silica zeolites J. Chem. Eng. Data 2011 56 4017 4023 10.1021/je200394p 

  51. 51. Datta S.J. Khumnoon C. Lee Z.H. Moon W.K. Docao S. Nguyen T.H. Hwang I.C. Moon D. Oleynikov P. Terasaki O. CO 2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate Science 2015 350 302 306 10.1126/science.aab1680 26472904 

  52. 52. Chuah C.Y. Yu S. Na K. Bae T.-H. Enhanced SF 6 recovery by hierarchically structured MFI zeolite J. Ind. Eng. Chem. 2018 62 64 71 10.1016/j.jiec.2017.12.045 

  53. 53. Kim Y.K. Park H.B. Lee Y.M. Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties J. Membr. Sci. 2004 243 9 17 10.1016/j.memsci.2004.05.001 

  54. 54. Suda H. Haraya K. Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide J. Phys. Chem. B 1997 101 3988 3994 10.1021/jp963997u 

  55. 55. Xiao Y. Dai Y. Chung T.-S. Guiver M.D. Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes Macromolecules 2005 38 10042 10049 10.1021/ma051354j 

  56. 56. Barsema J. Balster J. Jordan V. Van der Vegt N. Wessling M. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters J. Membr. Sci. 2003 219 47 57 10.1016/S0376-7388(03)00176-5 

  57. 57. Itta A.K. Tseng H.-H. Wey M.-Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H 2 /N 2 separation Int. J. Hydrog. Energy 2010 35 1650 1658 10.1016/j.ijhydene.2009.12.069 

  58. 58. Rao P.S. Wey M.-Y. Tseng H.-H. Kumar I.A. Weng T.-H. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application Micropor. Mesopor. Mater. 2008 113 499 510 10.1016/j.micromeso.2007.12.008 

  59. 59. Kita H. Yoshino M. Tanaka K. Okamoto K.-I. Gas permselectivity of carbonized polypyrrolone membrane Chem. Commun. 1997 1051 1052 10.1039/a700048k 

  60. 60. Yoshimune M. Fujiwara I. Haraya K. Carbon molecular sieve membranes derived from trimethylsilyl substituted poly (phenylene oxide) for gas separation Carbon 2007 45 553 560 10.1016/j.carbon.2006.10.017 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로