$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Weakly Supervised Crop Area Segmentation for an Autonomous Combine Harvester 원문보기

Sensors, v.21 no.14, 2021년, pp.4801 -   

Kim, Wan-Soo (Institute of Agricultural Science, Chungnam National University, Daejeon 34134, Korea) ,  Lee, Dae-Hyun (wskim0726@gmail.com) ,  Kim, Taehyeong (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Korea) ,  Kim, Hyunggun (babina@cnu.ac.kr) ,  Sim, Taeyong (Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul 08826, Korea) ,  Kim, Yong-Joo (taehyeong.kim@lge.com)

Abstract AI-Helper 아이콘AI-Helper

Machine vision with deep learning is a promising type of automatic visual perception for detecting and segmenting an object effectively; however, the scarcity of labelled datasets in agricultural fields prevents the application of deep learning to agriculture. For this reason, this study proposes we...

Keyword

참고문헌 (32)

  1. 1. Kneip J. Fleischmann P. Berns K. Crop edge detection based on stereo vision Rob. Auton. Syst. 2020 123 103323 10.1016/j.robot.2019.103323 

  2. 2. Lenaerts B. Missotten B. De Baerdemaeker J. Saeys W. LiDaR sensing to monitor straw output quality of a combine harvester Comput. Electron. Agric. 2012 85 40 44 10.1016/j.compag.2012.03.011 

  3. 3. Coen T. Vanrenterghem A. Saeys W. De Baerdemaeker J. Autopilot for a combine harvester Comput. Electron. Agric. 2008 63 57 64 10.1016/j.compag.2008.01.014 

  4. 4. Zhang Z. Cao R. Peng C. Liu R. Sun Y. Zhang M. Li H. Cut-edge detection method for rice harvesting based on machine vision Agronomy 2020 10 590 10.3390/agronomy10040590 

  5. 5. Benson E.R. Reid J.F. Zhang Q. Machine Vision-based Guidance System for Agricultural Grain Harvesters using Cut-edge Detection Biosyst. Eng. 2003 86 389 398 10.1016/j.biosystemseng.2003.07.002 

  6. 6. Gerrish J.B. Fehr B.W. Van Ee G.R. Welch D.P. Self-steering tractor guided by computer-vision Appl. Eng. Agric. 1997 13 559 563 10.13031/2013.21641 

  7. 7. Zhang T. Xia J.F. Wu G. Zhai J.B. Automatic navigation path detection method for tillage machines working on high crop stubble fields based on machine vision Int. J. Agric. Biol. Eng. 2014 7 29 37 

  8. 8. Lei Z. Mao W.S. Qi C.B. Xia Z.H. Crop-edge detection based on machine vision N. Z. J. Agric. Res. 2007 50 1367 1374 10.1080/00288230709510424 

  9. 9. Rovira-Mas F. Han S. Wei J. Reid J.F. Autonomous guidance of a corn harvester using stereo vision Agric. Eng. Int. CIGR J. 2007 IX 1 13 

  10. 10. Ahmad M.Z. Akhtar A. Khan A.Q. Khan A.A. Simplified vision based automatic navigation for wheat harvesting in low income economies arXiv 2015 1501.02376 

  11. 11. Cho W. Iida M. Suguri M. Masuda R. Kurita H. Using multiple sensors to detect uncut crop edges for autonomous guidance systems of head-feeding combine harvesters Eng. Agric. Environ. Food 2014 7 115 121 10.1016/j.eaef.2014.02.004 

  12. 12. Zhao T. Noguchi N. Yang L.L. Ishii K. Chen J. Development of uncut crop edge detection system based on laser rangefinder for combine harvesters Int. J. Agric. Biol. Eng. 2016 9 21 28 

  13. 13. Blanquart J.E. Sirignano E. Lenaerts B. Saeys W. Online crop height and density estimation in grain fields using LiDAR Biosyst. Eng. 2020 198 1 14 10.1016/j.biosystemseng.2020.06.014 

  14. 14. Li Y. Iida M. Suyama T. Suguri M. Masuda R. Implementation of deep-learning algorithm for obstacle detection and collision avoidance for robotic harvester Comput. Electron. Agric. 2020 174 105499 10.1016/j.compag.2020.105499 

  15. 15. Jiang W. Yang Z. Wang P. Cao Q. Navigation Path Points Extraction Method Based on Color Space and Depth Information for Combine Harvester Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM) Shenzhen, China 18?21 December 2020 622 627 

  16. 16. Long J. Shelhamer E. Darrell T. Fully Convolutional Networks for Semantic Segmentation Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Boston, MA, USA 7?12 June 2015 3431 3440 

  17. 17. Zhao H. Qi X. Shen X. Shi J. Jia J. Icnet for Real-Time Semantic Segmentation on High-Resolution Images Proceedings of the European Conference on Computer Vision (ECCV) Munich, Germany 8?14 September 2018 405 420 

  18. 18. Wang J. Sun K. Cheng T. Jiang B. Deng C. Zhao Y. Liu D. Mu Y. Tan M. Wang X. Deep high-resolution representation learning for visual recognition IEEE Trans. Pattern Anal. Mach. Intell. 2020 10.1109/TPAMI.2020.2983686 32248092 

  19. 19. He K. Gkioxari G. Dollar P. Girshick R. Mask r-cnn Proceedings of the IEEE International Conference on Computer Vision Venice, Italy 22?29 October 2017 2961 2969 

  20. 20. Kim W.-S. Lee D.-H. Kim Y.-J. Machine vision-based automatic disease symptom detection of onion downy mildew Comput. Electron. Agric. 2020 168 105099 10.1016/j.compag.2019.105099 

  21. 21. Ni X. Li C. Jiang H. Takeda F. Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield Hortic. Res. 2020 7 1 14 10.1038/s41438-020-0323-3 31908804 

  22. 22. Brahimi M. Arsenovic M. Laraba S. Sladojevic S. Boukhalfa K. Moussaoui A. Deep learning for plant diseases: Detection and saliency map visualisation Human and Machine Learning Springer Berlin/Heidelberg, Germany 2018 93 117 

  23. 23. Christiansen P. Nielsen L.N. Steen K.A. Jørgensen R.N. Karstoft H. DeepAnomaly: Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field Sensors 2016 16 1904 10.3390/s16111904 

  24. 24. Kim W.S. Lee D.H. Kim Y.J. Kim T. Hwang R.Y. Lee H.J. Path detection for autonomous traveling in orchards using patch-based CNN Comput. Electron. Agric. 2020 175 105620 10.1016/j.compag.2020.105620 

  25. 25. Choi J. Yin X. Yang L. Noguchi N. Development of a laser scanner-based navigation system for a combine harvester Eng. Agric. Environ. Food 2014 7 7 13 10.1016/j.eaef.2013.12.002 

  26. 26. Wu Y. Xu L. Crop organ segmentation and disease identification based on weakly supervised deep neural network Agronomy 2019 9 737 10.3390/agronomy9110737 

  27. 27. Zhou B. Khosla A. Lapedriza A. Oliva A. Torralba A. Learning Deep Features for Discriminative Localization Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, NV, USA 26 June?1 July 2016 2921 2929 

  28. 28. Kim W.S. Lee D.H. Kim Y.J. Kim T. Lee W.S. Choi C.H. Stereo-vision-based crop height estimation for agricultural robots Comput. Electron. Agric. 2021 181 105937 10.1016/j.compag.2020.105937 

  29. 29. Ji R. Qi L. Crop-row detection algorithm based on Random Hough Transformation Math. Comput. Model. 2011 54 1016 1020 10.1016/j.mcm.2010.11.030 

  30. 30. Ding L. Goshtasby A. On the canny edge detector Pattern Recognit. 2001 34 721 725 10.1016/S0031-3203(00)00023-6 

  31. 31. Kim G. Seo D. Kim K.-C. Hong Y. Lee M. Lee S. Kim H. Ryu H.-S. Kim Y.-J. Chung S.-O. Tillage boundary detection based on RGB imagery classification for an autonomous tractor Korean J. Agric. Sci. 2020 47 205 217 

  32. 32. Han X.Z. Kim H.J. Kim J.Y. Yi S.Y. Moon H.C. Kim J.H. Kim Y.J. Path-tracking simulation and field tests for an auto-guidance tillage tractor for a paddy field Comput. Electron. Agric. 2015 112 161 171 10.1016/j.compag.2014.12.025 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로