$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Artificial Compound Eye Systems and Their Application: A Review 원문보기

Micromachines, v.12 no.7, 2021년, pp.847 -   

Phan, Huu Lam (Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan 44610, Korea) ,  Yi, Jungho (phlam.ulsan@gmail.com) ,  Bae, Joonsung (Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea) ,  Ko, Hyoungho (myrmidon91@snu.ac.kr (J.Y.)) ,  Lee, Sangmin (dicho@snu.ac.kr (D.C.)) ,  Cho, Dongil (callme@snu.ac.kr (J.-M.S.)) ,  Seo, Jong-Mo (Department of Electrical and Electronics Engineering, Kangwon National University, Chuncheon 24341, Korea) ,  Koo, Kyo-in (baej@kangwon.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- and nano-fabri...

Keyword

참고문헌 (82)

  1. 1. Bar-Cohen Y. Biomimetics—Using nature to inspire human innovation Bioinspir. Biomim. 2006 1 P1 P12 10.1088/1748-3182/1/1/P01 17671297 

  2. 2. Seo J.-M. Koo K.I. Biomimetic Multiaperture Imaging Systems: A Review Sens. Mater. 2015 27 10.18494/SAM.2015.1085 

  3. 3. Lakshminarayanan V. Kuppuswamy Parthasarathy M. Biomimetic optics: Visual systems J. Mod. Opt. 2016 1 26 10.1080/09500340.2016.1224939 

  4. 4. Land M.F. Nilsson D.E. Animal Eyes Oxford University Press New York, NY, USA 2012 

  5. 5. Seo M. Seo J.M. Cho D.D. Koo K. Insect-Mimetic Imaging System Based on a Microlens Array Fabricated by a Patterned-Layer Integrating Soft Lithography Process Sensors 2018 18 2011 10.3390/s18072011 29932163 

  6. 6. Ahuja N.A. Bose N.K. Design of Large Field-of-View High-Resolution Miniaturized Imaging System EURASIP J. Adv. Signal Process. 2007 2007 10.1155/2007/59546 

  7. 7. OmniVision Technologies, Inc. OmniVision Announces Guinness World Record for Smallest Image Sensor and New Miniature Camera Module for Disposable Medical Applications Available online: https://www.ovt.com/news-events/product-releases/omnivision-announces-guinness-world-record-for-smallest-image-sensor-and-new-miniature-camera-module-for-disposable-medical-applications (accessed on 24 May 2021) 

  8. 8. Wu D. Wang J.-N. Niu L.-G. Zhang X.L. Wu S.Z. Chen Q.-D. Lee L.P. Sun H.B. Bioinspired Fabrication of High-Quality 3D Artificial Compound Eyes by Voxel-Modulation Femtosecond Laser Writing for Distortion-Free Wide-Field-of-View Imaging Adv. Opt. Mater. 2014 2 751 758 10.1002/adom.201400175 

  9. 9. Jeong K.H. Kim J. Lee L.P. Biologically Inspired Artificial Compound Eyes Science 2006 312 10.1126/science.1123053 

  10. 10. Micusik B. Pajdla T. Structure from motion with wide Circular Field of View Cameras IEEE Trans. Pattern Anal. Mach. Intell. 2006 28 10.1109/TPAMI.2006.151 

  11. 11. Nayar S.K. Catadioptic Omnidirectional Camera Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition San Juan, PR, USA 17–19 June 1997 

  12. 12. Varela F.G. The vertebrate and the insect compound eye in evolutionary perspective Vis. Res. 1971 11 10.1016/0042-6989(71)90040-X 

  13. 13. Borst A. Plett J. Seeing the world through an insect eye Nature 2013 497 47 10.1038/497047a 23636393 

  14. 14. Land M.F. The optics of animal eyes Contemp. Phys. 1988 29 435 455 10.1080/00107518808222601 

  15. 15. Völkel R. Eisner M. Weible K.J. Miniaturized imaging systems Microelectron. Eng. 2003 67–68 461 472 10.1016/S0167-9317(03)00102-3 

  16. 16. Qu P. Chen F. Liu H. Yang Q. Lu J. Si J. Wang Y. Hou X. A simple route to fabricate artificial compound eye structure Opt. Express 2012 20 10.1364/OE.20.005775 

  17. 17. Fallah H.R. Karimzadeh A. MTF of compound eye Opt. Express 2010 18 10.1364/OE.18.012304 20588356 

  18. 18. Greiner B. Ribi W.A. Wcislo W.T. Warrant E.J. Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis Cell Tissue Res. 2004 318 429 437 10.1007/s00441-004-0945-z 15365811 

  19. 19. Frederiksen R. Warrant E.J. Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: A clue to explain the evolution of nocturnal apposition eyes? J. Exp. Biol. 2008 211 844 851 10.1242/jeb.012179 18310109 

  20. 20. Sanders J.S. Halford C.E. Design and analysis of apposition compound eye optical sensors Opt. Eng. 1995 34 10.1117/12.183393 

  21. 21. Borst A. Drosophila’s view on insect vision Curr. Biol. 2009 19 R36 R47 10.1016/j.cub.2008.11.001 19138592 

  22. 22. Land M.F. Compound eye old and new optical mechanisms Nature 1980 287 10.1038/287681a0 7001250 

  23. 23. Zeil J. Sexual dimorphism in the visual system of flies: The compound eyes and neural superposition in bibionidae (Diptera) J. Comp. Physiol. 1983 150 379 393 10.1007/BF00605027 

  24. 24. Ball E.E. Kao L.C. Stone R.C. Land M.F. Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986 313 251 270 10.1098/rstb.1986.0037 

  25. 25. Stollberg K. Bruckner A. Duparre J. Dannberg P. Brauer A. Tunnermann A. The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects Opt. Express 2009 17 15747 15759 10.1364/OE.17.015747 19724574 

  26. 26. Tanida J. Kumagai T. Yamada K. Miyatake S. Ishida K. Morimoto T. Kondou N. Miyazaki D. Ichioka Y. Thin observation module by bound optics (TOMBO): Concept and experimental verification Appl. Opt. 2001 40 10.1364/AO.40.001806 18357179 

  27. 27. Tanida J. Kitamura Y. Yamada K. Miyatake S. Miyamoto M. Morimoto T. Masaki Y. Kondou N. Miyazaki D. Ichioka Y. Compact image capturing system based on compound imaging and digital reconstruction Proceedings of the Micro- and Nano-Optics for Optical Interconnection and Information Processing San Diego, CA, USA 29–31 July 2001 

  28. 28. Tanida J. Shogenji R. Kitamura Y. Yamada K. Miyamoto M. Miyatake S. Color imaging with an integrated compound imaging system Opt. Express 2003 11 10.1364/OE.11.002109 

  29. 29. Awwal A.A.S. Kagawa K. Iftekharuddin K.M. Fukata N. Tanida J. Burkhart S.C. High-speed multispectral three-dimensional imaging with a compound-eye camera TOMBO Proceedings of the Optics and Photonics for Information Processing IV San Diego, CA, USA 4–5 August 2010 

  30. 30. Duparré J. Dannberg P. Schreiber P. Bräuer A. Tünnermann A. Artificial apposition compound eye fabricated by micro optics technology Appl. Opt. 2004 43 10.1364/AO.43.004303 15298401 

  31. 31. Brückner A. Duparré J. Dannberg P. Bräuer A. Tünnermann A. Artificial neural superposition eye Opt. Express 2007 15 10.1364/OE.15.011922 19547555 

  32. 32. Duparré J. Dannberg P. Schreiber P. Bräuer A. Tünnermann A. Thin compound eye camera Appl. Opt. 2005 44 10.1364/AO.44.002949 15929282 

  33. 33. Duparré J. Schreiber P. Matthes A. Pshenay-Severin E. Bräuer A. Tünnermann A. Völkel R. Eisner M. Scharf T. Microoptical telescope compound eye Opt. Express 2005 13 10.1364/OPEX.13.000889 

  34. 34. Duparré J. Wippermann F. Dannberg P. Reimann A. Chirped arrays of refractive ellipsoidal microlens for aberration correction under oblique incidence Opt. Express 2005 13 10.1364/OPEX.13.010539 

  35. 35. Thienpont H. Druart G. Van Daele P. Guérineau N. Haïdar R. Mohr J. Taghizadeh M.R. Lambert E. Tauvy M. Thétas S. MULTICAM: A miniature cryogenic camera for infrared detection Proceedings of the Micro-Optics 2008 Strasbourg, France 14 May 2008 

  36. 36. Brückner A. Duparré J. Leitel R. Dannberg P. Bräuer A. Tünnermann A. Thin wafer-level camera lenses inspired by insect compound eyes Opt. Express 2010 10.1364/OE.18.024379 21164785 

  37. 37. Thienpont H. Brückner A. Van Daele P. Duparré J. Dannberg P. Mohr J. Zappe H. Leitel R. Bräuer A. Driving micro-optical imaging systems towards miniature camera applications Proceedings of the Micro-Optics 2010 Brussels, Belgium 12 May 2010 

  38. 38. Brückner A. Multi-aperture optics for wafer-level cameras J. Micro/Nanolithography MEMS MOEMS 2011 10 10.1117/1.3659144 

  39. 39. Meyer J. Brückner A. Leitel R. Dannberg P. Bräuer A. Tünnermann A. Optical Cluster Eye fabricated on wafer level Opt. Express 2011 19 10.1364/OE.19.017506 

  40. 40. Kim K. Jang K.W. Ryu J.K. Jeong K.H. Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging Light Sci. Appl. 2020 9 28 10.1038/s41377-020-0261-8 32140219 

  41. 41. Liu H. Chen F. Yang Q. Qu P. He S. Wang X. Si J. Hou X. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections Appl. Phys. Lett. 2012 100 10.1063/1.3696019 

  42. 42. Chen F. Liu H. Yang Q. Wang X. Hou C. Bian H. Liang W. Si J. Hou X. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method Opt. Express 2010 18 10.1364/OE.18.020334 20940925 

  43. 43. Bian H. Wei Y. Yang Q. Chen F. Zhang F. Du G. Yong J. Hou X. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process Appl. Phys. Lett. 2016 109 10.1063/1.4971334 

  44. 44. Huang S. Li M. Shen L. Qiu J. Zhou Y. Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures Opt. Commun. 2017 393 213 218 10.1016/j.optcom.2017.02.040 

  45. 45. Wang M. Yu W. Wang T. Han X. Gu E. Li X. A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number RSC Adv. 2015 5 35311 35316 10.1039/C5RA00957J 

  46. 46. Zhou P. Yu H. Zhong Y. Zou W. Wang Z. Liu L. Fabrication of Waterproof Artificial Compound Eyes with Variable Field of View Based on the Bioinspiration from Natural Hierarchical Micro–Nanostructures Nano-Micro Lett. 2020 12 10.1007/s40820-020-00499-x 

  47. 47. Deng Z. Chen F. Yang Q. Bian H. Du G. Yong J. Shan C. Hou X. Dragonfly-Eye-Inspired Artificial Compound Eyes with Sophisticated Imaging Adv. Funct. Mater. 2016 26 1995 2001 10.1002/adfm.201504941 

  48. 48. Li J. Wang W. Mei X. Hou D. Pan A. Liu B. Cui J. Fabrication of Artificial Compound Eye with Controllable Field of View and Improved Imaging ACS Appl. Mater. Interfaces 2020 12 8870 8878 10.1021/acsami.9b20740 32011852 

  49. 49. Wang Y. Shi C. Liu C. Yu X. Xu H. Wang T. Qiao Y. Yu W. Fabrication and characterization of a polymeric curved compound eye J. Micromech. Microeng. 2019 29 10.1088/1361-6439/ab0e9f 

  50. 50. Cheng Y. Cao J. Zhang Y. Hao Q. Review of state-of-the-art artificial compound eye imaging systems Bioinspiration Biomim. 2019 14 10.1088/1748-3190/aaffb5 

  51. 51. Keum D. Jang K.W. Jeon D.S. Hwang C.S.H. Buschbeck E.K. Kim M.H. Jeong K.H. Xenos peckii vision inspires an ultrathin digital camera Light Sci. Appl. 2018 7 80 10.1038/s41377-018-0081-2 30374402 

  52. 52. Lian G. Liu Y. Tao K. Xing H. Huang R. Chi M. Zhou W. Wu Y. Fabrication and Characterization of Curved Compound Eyes Based on Multifocal Microlenses Micromachines 2020 11 854 10.3390/mi11090854 32947769 

  53. 53. Liang W.-L. Pan J.-G. Su G.-D.J. One-lens camera using a biologically based artificial compound eye with multiple focal lengths Optica 2019 6 10.1364/OPTICA.6.000326 

  54. 54. Han Q. Zhai Y. Niu J. Liu J. Yang B. A multi-focusing curved artificial compound eye compatible with planar image sensors Microsyst. Technol. 2020 10.1007/s00542-020-05093-0 

  55. 55. Song Y.M. Xie Y. Malyarchuk V. Xiao J. Jung I. Choi K.J. Liu Z. Park H. Lu C. Kim R.H. Digital cameras with designs inspired by the arthropod eye Nature 2013 497 95 99 10.1038/nature12083 23636401 

  56. 56. Floreano D. Pericet-Camara R. Viollet S. Ruffier F. Bruckner A. Leitel R. Buss W. Menouni M. Expert F. Juston R. Miniature curved artificial compound eyes Proc. Natl. Acad. Sci. USA 2013 110 9267 9272 10.1073/pnas.1219068110 23690574 

  57. 57. Liu Y. Shaw B. Dickey M.D. Genzer J. Sequential self-folding of polymer sheets Sci. Adv. 2017 3 e1602417 10.1126/sciadv.1602417 28275736 

  58. 58. An B.W. Kim K. Kim M. Kim S.-Y. Hur S.-H. Park J.-U. Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics Small 2015 11 2263 2268 10.1002/smll.201403131 25604108 

  59. 59. Wu H. Chiang S.W. Yang C. Lin Z. Liu J. Moon K.-S. Kang F. Li B. Wong C.P. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas PLoS ONE 2015 10 e0136939 10.1371/journal.pone.0136939 26317999 

  60. 60. Sim K. Chen S. Li Z. Rao Z. Liu J. Lu Y. Jang S. Ershad F. Chen J. Xiao J. Three-dimensional curvy electronics created using conformal additive stamp printing Nat. Electron. 2019 2 471 479 10.1038/s41928-019-0304-4 

  61. 61. Li Z. Xiao J. Mechanics and optics of stretchable elastomeric microlens array for artificial compound eye camera J. Appl. Phys. 2015 117 014904 10.1063/1.4905299 

  62. 62. Li Z. Wang Y. Xiao J. Mechanics of bioinspired imaging systems Theor. Appl. Mech. Lett. 2016 6 11 20 10.1016/j.taml.2015.11.011 

  63. 63. Yuan W. Li L.-H. Lee W.-B. Chan C.-Y. Fabrication of Microlens Array and Its Application: A Review Chin. J. Mech. Eng. 2018 31 10.1186/s10033-018-0204-y 

  64. 64. Fan Z.B. Qiu H.Y. Zhang H.L. Pang X.N. Zhou L.D. Liu L. Ren H. Wang Q.H. Dong J.W. A broadband achromatic metalens array for integral imaging in the visible Light Sci. Appl. 2019 8 10.1038/s41377-019-0178-2 

  65. 65. Zhang S. Wong C.L. Zeng S. Bi R. Tai K. Dholakia K. Olivo M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective Nanophotonics 2020 10 259 293 10.1515/nanoph-2020-0373 

  66. 66. Li B. Piyawattanametha W. Qiu Z. Metalens-Based Miniaturized Optical Systems Micromachines 2019 10 310 10.3390/mi10050310 

  67. 67. Moon S.W. Kim Y. Yoon G. Rho J. Recent Progress on Ultrathin Metalenses for Flat Optics iScience 2020 23 101877 10.1016/j.isci.2020.101877 33344920 

  68. 68. Novotny L. van Hulst N. Antennas for light Nat. Photonics 2011 5 83 90 10.1038/nphoton.2010.237 

  69. 69. Salmanogli A. Gecim H.S. Piskin E. Plasmonic System as a Compound Eye: Image Point-Spread Function Enhancing by Entanglement IEEE Sens. J. 2018 18 5723 5731 10.1109/JSEN.2018.2830970 

  70. 70. Kogos L.C. Li Y. Liu J. Li Y. Tian L. Paiella R. Plasmonic ommatidia for lensless compound-eye vision Nat. Commun. 2020 11 10.1038/s41467-020-15460-0 32242009 

  71. 71. Fan C.Y. Lin C.P. Su G.J. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement Sci. Rep. 2020 10 15677 10.1038/s41598-020-72668-2 32973320 

  72. 72. Miyata M. Nakajima M. Hashimoto T. Compound-eye metasurface optics enabling a high-sensitivity, ultra-thin polarization camera Opt. Express 2020 28 9996 10014 10.1364/OE.389591 32225598 

  73. 73. Guo Q. Shi Z. Huang Y.W. Alexander E. Qiu C.W. Capasso F. Zickler T. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders Proc. Natl. Acad. Sci. USA 2019 116 22959 22965 10.1073/pnas.1912154116 31659026 

  74. 74. Cogal O. Leblebici Y. An Insect Eye Inspired Miniaturized Multi-Camera System for Endoscopic Imaging IEEE Trans. Biomed. Circuits Syst. 2017 11 212 224 10.1109/TBCAS.2016.2547388 27249836 

  75. 75. Hu T. Zhong Q. Li N. Dong Y. Xu Z. Fu Y.H. Li D. Bliznetsov V. Zhou Y. Lai K.H. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging Nanophotonics 2020 9 823 830 10.1515/nanoph-2019-0470 

  76. 76. Thienpont H. Mohr J. Zappe H. Nakajima H. Leitel R. Brückner A. Buß W. Viollet S. Pericet-Camara R. Mallot H. Curved artificial compound-eyes for autonomous navigation Proceedings of the Micro-Optics 2014 Brussels, Belgium 2 May 2014 

  77. 77. Yamada K. Mitsui H. Asano T. Tanida J. Takahashi H. Development of Ultra thin three dimentional image capturing system Proceedings Volume 6056, Three-Dimensional Image Capture and Applications VII, Proceedings of the Electronic Imaging 2006, San Jose, CA, USA, 27 January 2006 SPIE Bellingham, WA, USA 2006 

  78. 78. Horisaki R. Irie S. Ogura Y. Tanida J. Three Dimensional Information Acquisition Using a Compound Imaging system Opt. Rev. 2007 14 10.1007/s10043-007-0347-z 

  79. 79. Lee W.-B. Lee H.-N. Depth-estimation-enabled compound eyes Opt. Commun. 2018 412 178 185 10.1016/j.optcom.2017.12.009 

  80. 80. Lai X.C. Meng L.J. Artificial Compound-Eye Gamma Camera for MRI Compatible SPECT Imaging Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC) Seoul, Korea 27 October 2013 

  81. 81. Yang T. Liu Y.H. Mu Q. Zhu M. Pu D. Chen L. Huang W. Compact compound-eye imaging module based on the phase diffractive microlens array for biometric fingerprint capturing Opt. Express 2019 27 7513 7522 10.1364/OE.27.007513 30876314 

  82. 82. Pericet-Camara R. Bahi-Vila G. Lecoeur J. Floreano D. Miniature artificial compound eyes for optic-flowbased robotic navigation Proceedings of the 2014 13th Workshop on Information Optics (WIO) Neuchatel, Switzerland 7−11 July 2014 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로