$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Optimal flickering light stimulation for entraining gamma waves in the human brain 원문보기

Scientific reports, v.11 no.1, 2021년, pp.16206 -   

Lee, Kanghee (Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620 Republic of Korea) ,  Park, Yeseung (Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620 Republic of Korea) ,  Suh, Seung Wan (Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea) ,  Kim, Sang-Su (Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea) ,  Kim, Do-Won (Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea) ,  Lee, Jaeho (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Park, Jaehyeok (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) ,  Yoo, Seunghyup (School of Electrical) ,  Kim, Ki Woong

Abstract AI-Helper 아이콘AI-Helper

Although light flickering at 40 Hz reduced Alzheimer’s disease (AD) pathologies in mice by entraining gamma waves, it failed to reduce cerebral amyloid burden in a study on six patients with AD or mild cognitive impairment. We investigated the optimal color, intensity, and frequency of the fli...

참고문헌 (37)

  1. 1. Verret L Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model Cell 2012 149 708 721 10.1016/j.cell.2012.02.046 22541439 

  2. 2. Mably AJ Colgin LL Gamma oscillations in cognitive disorders Curr. Opin. Neurobiol. 2018 52 182 187 10.1016/j.conb.2018.07.009 30121451 

  3. 3. Stam CJ Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band . J. Clin. Neurophysiol. 2002 19 562 574 10.1097/00004691-200212000-00010 12488788 

  4. 4. Koenig T Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment Neurobiol. Aging 2005 26 165 171 10.1016/j.neurobiolaging.2004.03.008 15582746 

  5. 5. Bai W Xia M Liu T Tian X Aβ1-42-induced dysfunction in synchronized gamma oscillation during working memory Behav. Brain Res. 2016 307 112 119 10.1016/j.bbr.2016.04.003 27058924 

  6. 6. Iaccarino HF Gamma frequency entrainment attenuates amyloid load and modifies microglia Nature 2016 540 230 10.1038/nature20587 27929004 

  7. 7. Martorell AJ Multi-sensory gamma stimulation ameliorates alzheimer's-associated pathology and improves cognition Cell 2019 177 256 271 10.1016/j.cell.2019.02.014 30879788 

  8. 8. Ismail R The Effect of 40-Hz light therapy on amyloid load in patients with prodromal and clinical Alzheimer's disease Int. J. Alzheimers Dis. 2018 2018 6852303 10.1155/2018/6852303 30155285 

  9. 9. Tsoneva T Garcia-Molina G Desain P Neural dynamics during repetitive visual stimulation J. Neural Eng. 2015 12 066017 10.1088/1741-2560/12/6/066017 26479469 

  10. 10. Jones M Gamma band light stimulation in human case studies: groundwork for potential Alzheimer's disease treatment J. Alzheimer's Dis. (JAD) 2019 10.3233/jad-190299 

  11. 11. Zhang J Illumination with 630 nm red light reduces oxidative stress and restores memory by photo-activating catalase and formaldehyde dehydrogenase in SAMP8 mice Antioxid. Redox Signal. 2018 30 1432 1449 10.1089/ars.2018.7520 29869529 

  12. 12. Jagdeo JR Adams LE Brody NI Siegel DM Transcranial red and near infrared light transmission in a cadaveric model PLoS ONE 2012 7 e47460 10.1371/journal.pone.0047460 23077622 

  13. 13. Regan D An effect of stimulus colour on average steady-state potentials evoked in man Nature 1966 210 1056 1057 10.1038/2101056a0 5914904 

  14. 14. Tello RJMG Muller SMT Ferreira A Bastos TF Comparison of the influence of stimuli color on steady-state visual evoked potentials Res. Biomed. Eng. 2015 31 218 231 10.1590/2446-4740.0739 

  15. 15. Roorda A Williams DR The arrangement of the three cone classes in the living human eye Nature 1999 397 520 522 10.1038/17383 10028967 

  16. 16. Roorda A Metha AB Lennie P Williams DR Packing arrangement of the three cone classes in primate retina Vision. Res. 2001 41 1291 1306 10.1016/S0042-6989(01)00043-8 11322974 

  17. 17. Goldstein BE Sensation and Perception 2009 8 Cengage Learning 

  18. 18. Strettoi E Novelli E Mazzoni F Barone I Damiani D Complexity of retinal cone bipolar cells Prog. Retin. Eye Res. 2010 29 272 283 10.1016/j.preteyeres.2010.03.005 20362067 

  19. 19. Bieger, J., Molina, G. G. & Zhu, D. in Proceedings of 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 3345?3348 (Engineering in Medicine and Biology Society). 

  20. 20. Notbohm A Herrmann CS Flicker regularity is crucial for entrainment of alpha oscillations Front. Hum. Neurosci. 2016 10.3389/fnhum.2016.00503 27790105 

  21. 21. Notbohm A Kurths J Herrmann CS Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses Front. Hum. Neurosci. 2016 10.3389/fnhum.2016.00010 27790105 

  22. 22. Andersen SK Muller MM Martinovic J Bottom-up biases in feature-selective attention J. Neurosci. 2012 32 16953 16958 10.1523/jneurosci.1767-12.2012 23175846 

  23. 23. Mouli, S. & Palaniappan, R. in 2016 International Conference for Students on Applied Engineering (ICSAE). 201?206. 

  24. 24. Adaikkan C Gamma entrainment binds higher-order brain regions and offers neuroprotection Neuron 2019 102 929 943.e928 10.1016/j.neuron.2019.04.011 31076275 

  25. 25. Zheng L Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity Nat. Commun. 2020 11 3012 10.1038/s41467-020-16826-0 32541656 

  26. 26. Gregoriou GG Gotts SJ Zhou H Desimone R High-frequency, long-range coupling between prefrontal and visual cortex during attention Science 2009 324 1207 1210 10.1126/science.1171402 19478185 

  27. 27. Waser M Quantifying synchrony patterns in the EEG of Alzheimer's patients with linear and non-linear connectivity markers J. Neural Transm. 2016 123 297 316 10.1007/s00702-015-1461-x 26411482 

  28. 28. Garn H Quantitative EEG markers relate to Alzheimer’s disease severity in the Prospective Dementia Registry Austria (PRODEM) Clin. Neurophysiol. 2015 126 505 513 10.1016/j.clinph.2014.07.005 25091343 

  29. 29. Garn H Coronel C Waser M Caravias G Ransmayr G Differential diagnosis between patients with probable Alzheimer's disease, Parkinson's disease dementia, or dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using quantitative electroencephalographic features J. Neural Transm. (Vienna) 2017 124 569 581 10.1007/s00702-017-1699-6 28243755 

  30. 30. Dauwels J Vialatte F Musha T Cichocki A A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG Neuroimage 2010 49 668 693 10.1016/j.neuroimage.2009.06.056 19573607 

  31. 31. Delorme A Makeig S EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis J. Neurosci. Methods 2004 134 9 21 10.1016/j.jneumeth.2003.10.009 15102499 

  32. 32. Cui J Xu L Bressler SL Ding M Liang H BSMART: a Matlab/C toolbox for analysis of multichannel neural time series Neural Netw. 2008 21 1094 1104 10.1016/j.neunet.2008.05.007 18599267 

  33. 33. Geweke J Measurement of linear dependence and feedback between multiple time series J. Am. Stat. Assoc. 1982 77 304 313 10.1080/01621459.1982.10477803 

  34. 34. Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: J. Econom. Soc. , 424?438 (1969). 

  35. 35. Cohen MX Analyzing neural time series data: theory and practice 2014 MIT press 

  36. 36. Rubinov M Sporns O Complex network measures of brain connectivity: uses and interpretations Neuroimage 2010 52 1059 1069 10.1016/j.neuroimage.2009.10.003 19819337 

  37. 37. Boccaletti S Latora V Moreno Y Chavez M Hwang DU Complex networks: structure and dynamics Phys. Rep. 2006 424 175 308 10.1016/j.physrep.2005.10.009 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로