$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2 -mutant mice 원문보기

Nature communications, v.12 no.1, 2021년, pp.5116 -   

Lee, Eunee (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Lee, Seungjoon (Department of Biological Sciences, KAIST, Daejeon, Korea) ,  Shin, Jae Jin (Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Korea) ,  Choi, Woochul (Program of Brain and Cognitive Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea) ,  Chung, Changuk (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Lee, Suho (Department of Biological Sciences, KAIST, Daejeon, Korea) ,  Kim, Jihye (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Ha, Seungmin (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Kim, Ryunhee (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Yoo, Taesun (Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea) ,  Yoo, Ye-Eun (Department of Biological Sciences, KAIST, Daejeon, Kor) ,  Kim, Jisoo ,  Noh, Young Woo ,  Rhim, Issac ,  Lee, Soo Yeon ,  Kim, Woohyun ,  Lee, Taekyung ,  Shin, Hyogeun ,  Cho, Il-Joo ,  Deisseroth, Karl ,  Kim, Sang Jeong ,  Park, Joo Min ,  Jung, Min Whan ,  Paik, Se-Bum ,  Kim, Eunjoon

Abstract AI-Helper 아이콘AI-Helper

NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions...

참고문헌 (83)

  1. 1. Nelson SB Valakh V Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders Neuron 2015 87 684 698 10.1016/j.neuron.2015.07.033 26291155 

  2. 2. Bourgeron T From the genetic architecture to synaptic plasticity in autism spectrum disorder Nat. Rev. Neurosci. 2015 16 551 563 10.1038/nrn3992 26289574 

  3. 3. Monteiro P Feng G SHANK proteins: roles at the synapse and in autism spectrum disorder Nat. Rev. Neurosci. 2017 18 147 157 10.1038/nrn.2016.183 28179641 

  4. 4. Jiang YH Ehlers MD Modeling autism by SHANK gene mutations in mice Neuron 2013 78 8 27 10.1016/j.neuron.2013.03.016 23583105 

  5. 5. Ebert DH Greenberg ME Activity-dependent neuronal signalling and autism spectrum disorder Nature 2013 493 327 337 10.1038/nature11860 23325215 

  6. 6. Grabrucker AM Schmeisser MJ Schoen M Boeckers TM Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies Trends Cell Biol. 2011 21 594 603 10.1016/j.tcb.2011.07.003 21840719 

  7. 7. Kleijer KT Neurobiology of autism gene products: towards pathogenesis and drug targets Psychopharmacology 2014 231 1037 1062 10.1007/s00213-013-3403-3 24419271 

  8. 8. Sala C Vicidomini C Bigi I Mossa A Verpelli C Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders J. Neurochemistry 2015 135 849 858 10.1111/jnc.13232 

  9. 9. Sztainberg Y Zoghbi HY Lessons learned from studying syndromic autism spectrum disorders Nat. Neurosci. 2016 19 1408 1417 10.1038/nn.4420 27786181 

  10. 10. de la Torre-Ubieta L Won H Stein JL Geschwind DH Advancing the understanding of autism disease mechanisms through genetics Nat. Med. 2016 22 345 361 10.1038/nm.4071 27050589 

  11. 11. Duffney LJ Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism J. Neurosci. 2013 33 15767 15778 10.1523/JNEUROSCI.1175-13.2013 24089484 

  12. 12. Duffney LJ Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators Cell Rep. 2015 11 1400 1413 10.1016/j.celrep.2015.04.064 26027926 

  13. 13. Qin L Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition Nat. Neurosci. 2018 21 564 575 10.1038/s41593-018-0110-8 29531362 

  14. 14. Blundell J Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior J. Neurosci. 2010 30 2115 2129 10.1523/JNEUROSCI.4517-09.2010 20147539 

  15. 15. Won H Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function Nature 2012 486 261 265 10.1038/nature11208 22699620 

  16. 16. Huang TN Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality Nat. Neurosci. 2014 17 240 247 10.1038/nn.3626 24441682 

  17. 17. Lee E Lee J Kim E Excitation/inhibition imbalance in animal models of autism spectrum disorders Biol. Psychiatry 2017 81 838 847 10.1016/j.biopsych.2016.05.011 27450033 

  18. 18. Han S Autistic-like behaviour in Scn1a+/? mice and rescue by enhanced GABA-mediated neurotransmission Nature 2012 489 385 390 10.1038/nature11356 22914087 

  19. 19. Chen Q Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD Nat. Neurosci. 2020 23 520 532 10.1038/s41593-020-0598-6 32123378 

  20. 20. Chao HT Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes Nature 2010 468 263 269 10.1038/nature09582 21068835 

  21. 21. Yizhar O Neocortical excitation/inhibition balance in information processing and social dysfunction Nature 2011 477 171 178 10.1038/nature10360 21796121 

  22. 22. Han S Tai C Jones CJ Scheuer T Catterall WA Enhancement of inhibitory neurotransmission by GABAA receptors having alpha2,3-subunits ameliorates behavioral deficits in a mouse model of autism Neuron 2014 81 1282 1289 10.1016/j.neuron.2014.01.016 24656250 

  23. 23. Jung EM Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior Nat. Neurosci. 2017 20 1694 1707 10.1038/s41593-017-0013-0 29184203 

  24. 24. Rudy B Fishell G Lee S Hjerling-Leffler J Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons Dev. Neurobiol. 2011 71 45 61 10.1002/dneu.20853 21154909 

  25. 25. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl. Med. 9 , eaah6733 (2017). 

  26. 26. Cao, W. et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron 97 , 1253?1260 (2018). 

  27. 27. Saunders JA Knockout of NMDA receptors in parvalbumin interneurons recreates autism-like phenotypes Autism Res. 2013 6 69 77 10.1002/aur.1264 23441094 

  28. 28. Ferri SL Sociability development in mice with cell-specific deletion of the NMDA receptor NR1 subunit gene Genes Brain Behav. 2020 19 e12624 10.1111/gbb.12624 31721416 

  29. 29. Port RG Parvalbumin cell ablation of NMDA-R1 leads to altered phase, but not amplitude, of gamma-band cross-frequency coupling Brain Connect 2019 9 263 272 10.1089/brain.2018.0639 30588822 

  30. 30. Lee S Shank2 deletion in parvalbumin neurons leads to moderate hyperactivity, enhanced self-grooming and suppressed seizure susceptibility in mice Front. Mol. Neurosci. 2018 11 209 10.3389/fnmol.2018.00209 29970987 

  31. 31. Belousov AB Fontes JD Neuronal gap junctions: making and breaking connections during development and injury Trends Neurosci. 2013 36 227 236 10.1016/j.tins.2012.11.001 23237660 

  32. 32. Connors BW Synchrony and so much more: diverse roles for electrical synapses in neural circuits Dev. Neurobiol. 2017 77 610 624 10.1002/dneu.22493 28245529 

  33. 33. Bennett MV Zukin RS Electrical coupling and neuronal synchronization in the Mammalian brain Neuron 2004 41 495 511 10.1016/S0896-6273(04)00043-1 14980200 

  34. 34. Hestrin S Galarreta M Electrical synapses define networks of neocortical GABAergic neurons Trends Neurosci. 2005 28 304 309 10.1016/j.tins.2005.04.001 15927686 

  35. 35. Zeldenrust F Wadman WJ Englitz B Neural coding with bursts-current state and future perspectives Front. Comput. Neurosci. 2018 12 48 10.3389/fncom.2018.00048 30034330 

  36. 36. Lisman JE Bursts as a unit of neural information: making unreliable synapses reliable Trends Neurosci. 1997 20 38 43 10.1016/S0166-2236(96)10070-9 9004418 

  37. 37. Csicsvari J Hirase H Czurko A Buzsaki G Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat Neuron 1998 21 179 189 10.1016/S0896-6273(00)80525-5 9697862 

  38. 38. Oswald AM Chacron MJ Doiron B Bastian J Maler L Parallel processing of sensory input by bursts and isolated spikes J. Neurosci. 2004 24 4351 4362 10.1523/JNEUROSCI.0459-04.2004 15128849 

  39. 39. Sherman SM Tonic and burst firing: dual modes of thalamocortical relay Trends Neurosci. 2001 24 122 126 10.1016/S0166-2236(00)01714-8 11164943 

  40. 40. Crick F Function of the thalamic reticular complex: the searchlight hypothesis Proc. Natl Acad. Sci. USA 1984 81 4586 4590 10.1073/pnas.81.14.4586 6589612 

  41. 41. Xu NL Nonlinear dendritic integration of sensory and motor input during an active sensing task Nature 2012 492 247 251 10.1038/nature11601 23143335 

  42. 42. Cui Y Yang Y Dong Y Hu H Decoding depression: insights from glial and ketamine regulation of neuronal burst firing in lateral habenula Cold Spring Harb. Symp. Quant. Biol. 2018 83 141 150 10.1101/sqb.2018.83.036871 30718267 

  43. 43. Yang Y Ketamine blocks bursting in the lateral habenula to rapidly relieve depression Nature 2018 554 317 322 10.1038/nature25509 29446381 

  44. 44. Kepecs A Lisman J Information encoding and computation with spikes and bursts Network 2003 14 103 118 10.1080/net.14.1.103.118 12613553 

  45. 45. Onorato I A distinct class of bursting neurons with strong gamma synchronization and stimulus selectivity in monkey V1 Neuron 2020 105 180 197 10.1016/j.neuron.2019.09.039 31732258 

  46. 46. Blatow M A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex Neuron 2003 38 805 817 10.1016/S0896-6273(03)00300-3 12797964 

  47. 47. Wang F Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex Science 2011 334 693 697 10.1126/science.1209951 21960531 

  48. 48. Lee E Enhanced neuronal activity in the medial prefrontal cortex during social approach behavior J. Neurosci. 2016 36 6926 6936 10.1523/JNEUROSCI.0307-16.2016 27358451 

  49. 49. Levy DR Dynamics of social representation in the mouse prefrontal cortex Nat. Neurosci. 2019 22 2013 2022 10.1038/s41593-019-0531-z 31768051 

  50. 50. Lazaro MT Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism Cell Rep. 2019 27 2567 2578 10.1016/j.celrep.2019.05.006 31141683 

  51. 51. Murugan M Combined social and spatial coding in a descending projection from the prefrontal cortex Cell 2017 171 1663 1677 10.1016/j.cell.2017.11.002 29224779 

  52. 52. Latimer KW Yates JL Meister ML Huk AC Pillow JW Single-trial spike trains in parietal cortex reveal discrete steps during decision-making Science 2015 349 184 187 10.1126/science.aaa4056 26160947 

  53. 53. Kim D Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory Neuron 2016 92 902 915 10.1016/j.neuron.2016.09.023 27746132 

  54. 54. Liu L Cell type-differential modulation of prefrontal cortical GABAergic interneurons on low gamma rhythm and social interaction Sci. Adv. 2020 6 eaay4073 10.1126/sciadv.aay4073 32832654 

  55. 55. Kim H Ahrlund-Richter S Wang X Deisseroth K Carlen M Prefrontal parvalbumin neurons in control of attention Cell 2016 164 208 218 10.1016/j.cell.2015.11.038 26771492 

  56. 56. Wang J Tian Y Zeng LH Xu H Prefrontal disinhibition in social fear: a vital action of somatostatin interneurons Front Cell Neurosci. 2020 14 611732 10.3389/fncel.2020.611732 33390908 

  57. 57. Cummings KA Clem RL Prefrontal somatostatin interneurons encode fear memory Nat. Neurosci. 2020 23 61 74 10.1038/s41593-019-0552-7 31844314 

  58. 58. Abbas AI Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding Neuron 2018 100 926 939 10.1016/j.neuron.2018.09.029 30318409 

  59. 59. Kamigaki T Dan Y Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior Nat. Neurosci. 2017 20 854 863 10.1038/nn.4554 28436982 

  60. 60. Pinto L Dan Y Cell-type-specific activity in prefrontal cortex during goal-directed behavior Neuron 2015 87 437 450 10.1016/j.neuron.2015.06.021 26143660 

  61. 61. Hu H Gan J Jonas P Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function Science 2014 345 1255263 10.1126/science.1255263 25082707 

  62. 62. Sohal VS Zhang F Yizhar O Deisseroth K Parvalbumin neurons and gamma rhythms enhance cortical circuit performance Nature 2009 459 698 702 10.1038/nature07991 19396159 

  63. 63. Cardin JA Driving fast-spiking cells induces gamma rhythm and controls sensory responses Nature 2009 459 663 667 10.1038/nature08002 19396156 

  64. 64. Wang J Resting state EEG abnormalities in autism spectrum disorders J. Neurodev. Disord. 2013 5 24 10.1186/1866-1955-5-24 24040879 

  65. 65. Port RG Gandal MJ Roberts TP Siegel SJ Carlson GC Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology Front Cell Neurosci. 2014 8 414 10.3389/fncel.2014.00414 25538564 

  66. 66. Rojas DC Wilson LB gamma-band abnormalities as markers of autism spectrum disorders Biomark. Med. 2014 8 353 368 10.2217/bmm.14.15 24712425 

  67. 67. Lim L Mi D Llorca A Marin O Development and functional diversification of cortical interneurons Neuron 2018 100 294 313 10.1016/j.neuron.2018.10.009 30359598 

  68. 68. Iaccarino HF Gamma frequency entrainment attenuates amyloid load and modifies microglia Nature 2016 540 230 235 10.1038/nature20587 27929004 

  69. 69. Montoro RJ Yuste R Gap junctions in developing neocortex: a review Brain Res. Rev. 2004 47 216 226 10.1016/j.brainresrev.2004.06.009 15572173 

  70. 70. Cruikshank SJ Potent block of Cx36 and Cx50 gap junction channels by mefloquine Proc. Natl Acad. Sci. USA 2004 101 12364 12369 10.1073/pnas.0402044101 15297615 

  71. 71. Chung C Early correction of N-methyl-D-aspartate receptor function improves autistic-like social behaviors in adult Shank2(-/-) mice Biol. Psychiatry 2019 85 534 543 10.1016/j.biopsych.2018.09.025 30466882 

  72. 72. Kim R Cell-type-specific Shank2 deletion in mice leads to differential synaptic and behavioral phenotypes J. Neurosci. 2018 38 4076 4092 10.1523/JNEUROSCI.2684-17.2018 29572432 

  73. 73. Silverman JL Yang M Lord C Crawley JN Behavioural phenotyping assays for mouse models of autism Nat. Rev. Neurosci. 2010 11 490 502 10.1038/nrn2851 20559336 

  74. 74. Cho KK Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice Neuron 2015 85 1332 1343 10.1016/j.neuron.2015.02.019 25754826 

  75. 75. Vormstein-Schneider, D. et al. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat. Neurosci. 23 , 1629?1636 (2020). 

  76. 76. Cardin JA Inhibitory interneurons regulate temporal precision and correlations in cortical circuits Trends Neurosci. 2018 41 689 700 10.1016/j.tins.2018.07.015 30274604 

  77. 77. Arumugam H Liu X Colombo PJ Corriveau RA Belousov AB NMDA receptors regulate developmental gap junction uncoupling via CREB signaling Nat. Neurosci. 2005 8 1720 1726 10.1038/nn1588 16299502 

  78. 78. Barnes SA Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders Mol. Psychiatry 2015 20 1161 1172 10.1038/mp.2015.113 26260494 

  79. 79. Hippenmeyer S A developmental switch in the response of DRG neurons to ETS transcription factor signaling PLoS Biol. 2005 3 e159 10.1371/journal.pbio.0030159 15836427 

  80. 80. Crawley JN Designing mouse behavioral tasks relevant to autistic-like behaviors Ment. Retard Dev. Disabil. Res Rev. 2004 10 248 258 10.1002/mrdd.20039 15666335 

  81. 81. Nath, A. & Schwartz, G.W. Electrical synapses convey orientation selectivity in the mouse retina. Nat Commun 8 , 2025 (2017). 

  82. 82. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. Electrical Synapses and Synchrony: The Role of Intrinsic Currents. J. Neurosci. 23 , 6280?6294 (2003). 

  83. 83. Okaty BW Miller MN Sugino K Hempel CM Nelson SB Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons J. Neurosci. 2009 29 7040 7052 10.1523/JNEUROSCI.0105-09.2009 19474331 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로