최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of statistical computation and simulation, v.91 no.12, 2021년, pp.2551 - 2568
Doo, Woojin (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea) , Kim, Heeyoung (Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea)
초록이 없습니다.
Friedman, Jerome H., Meulman, Jacqueline J.. Clustering objects on subsets of attributes. Journal of the Royal Statistical Society Series B, Statistical methodology, vol.66, no.4, 815-849.
Hoff, Peter D.. Model-based subspace clustering. Bayesian analysis, vol.1, no.2,
Raftery, Adrian E, Dean, Nema. Variable Selection for Model-Based Clustering. Journal of the American Statistical Association, vol.101, no.473, 168-178.
Maugis, Cathy, Celeux, Gilles, Martin‐Magniette, Marie‐Laure. Variable Selection for Clustering with Gaussian Mixture Models. Biometrics, vol.65, no.3, 701-709.
Tadesse, M. G., Sha, N., Vannucci, M.. Bayesian Variable Selection in Clustering High-Dimensional Data. Journal of the American Statistical Association, vol.100, no.470, 602-617.
Kim, Sinae, Tadesse, Mahlet G., Vannucci, Marina. Variable selection in clustering via Dirichlet process mixture models. Biometrika, vol.93, no.4, 877-893.
Yau, Christopher, Holmes, Chris. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination. Bayesian analysis, vol.6, no.2,
Malsiner-Walli, Gertraud, Frühwirth-Schnatter, Sylvia, Grün, Bettina. Model-based clustering based on sparse finite Gaussian mixtures. Statistics and computing, vol.26, 303-324.
Miller, Jeffrey W., Harrison, Matthew T.. Mixture Models With a Prior on the Number of Components. Journal of the American Statistical Association, vol.113, no.521, 340-356.
Richardson, Sylvia., Green, Peter J.. On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion). Journal of the Royal Statistical Society. Series B (Methodological), vol.59, no.4, 731-792.
Miller JW, Harrison MT. A simple example of Dirichlet process mixture inconsistency for the number of components. In Advances in neural information processing systems. Vol. 26, 2013. p. 199-206.
Jain, S., Neal, R. M.. A Split-Merge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model. Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, vol.13, no.1, 158-182.
Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A. J.. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America, vol.96, no.12, 6745-6750.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., Lander, E. S.. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, vol.286, no.5439, 531-537.
Nobile, Agostino, Fearnside, Alastair T.. Bayesian finite mixtures with an unknown number of components: The allocation sampler. Statistics and computing, vol.17, no.2, 147-162.
Blackwell, David, MacQueen, James B.. Ferguson Distributions Via Polya Urn Schemes. The Annals of statistics, vol.1, no.2,
Geng, Junxian, Bhattacharya, Anirban, Pati, Debdeep. Probabilistic Community Detection With Unknown Number of Communities. Journal of the American Statistical Association, vol.114, no.526, 893-905.
Wasserman, Larry. Asymptotic Inference for Mixture Models by Using Data-Dependent Priors. Journal of the Royal Statistical Society Series B, Statistical methodology, vol.62, no.1, 159-180.
Hubert, Lawrence, Arabie, Phipps. Comparing partitions. Journal of classification, vol.2, no.1, 193-218.
Huang, Te Ming, Kecman, Vojislav. Gene extraction for cancer diagnosis by support vector machines—An improvement. Artificial intelligence in medicine, vol.35, no.1, 185-194.
DNA microarray technology and data analysis in cancer research Li S 2008
Dudoit, Sandrine, Fridlyand, Jane, Speed, Terence P. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association, vol.97, no.457, 77-87.
Celeux, Gilles, Maugis-Rabusseau, Cathy, Sedki, Mohammed. Variable selection in model-based clustering and discriminant analysis with a regularization approach. Advances in data analysis and classification, vol.13, no.1, 259-278.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.